Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Front Toxicol ; 4: 840606, 2022.
Article En | MEDLINE | ID: mdl-35832493

The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line (AXiAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment (AXlung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. AXiAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, AXiAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor ß1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that AXiAECs cultured on the AXlung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm2) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics.

2.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L794-L809, 2020 11 01.
Article En | MEDLINE | ID: mdl-32726135

Lung injury in mice induces mobilization of discrete subsets of epithelial progenitor cells to promote new airway and alveolar structures. However, whether similar cell types exist in human lung remains unresolved. Using flow cytometry, we identified a distinct cluster of cells expressing the epithelial cell adhesion molecule (EpCAM), a cell surface marker expressed on epithelial progenitor cells, enriched in the ecto-5'-nucleotidase CD73 in unaffected postnatal human lungs resected from pediatric patients with congenital lung lesions. Within the EpCAM+CD73+ population, a small subset coexpresses integrin ß4 and HTII-280. This population remained stable with age. Spatially, EpCAM+CD73+ cells were positioned along the basal membrane of respiratory epithelium and alveolus next to CD73+ cells lacking EpCAM. Expanded EpCAM+CD73+ cells give rise to a pseudostratified epithelium in a two-dimensional air-liquid interface or a clonal three-dimensional organoid assay. Organoids generated under alveolar differentiation conditions were cystic-like and lacked robust alveolar mature cell types. Compared with unaffected postnatal lung, congenital lung lesions were marked by clusters of EpCAM+CD73+ cells in airway and cystic distal lung structures lined by simple epithelium composed of EpCAM+SCGB1A1+ cells and hyperplastic EpCAM+proSPC+ cells. In non-small-cell lung cancer (NSCLC), there was a marked increase in EpCAM+CD73+ tumor cells enriched in inhibitory immune checkpoint molecules CD47 and programmed death-ligand 1 (PD-L1), which was associated with poor survival in lung adenocarcinoma (LUAD). In conclusion, EpCAM+CD73+ cells are rare novel epithelial progenitor cells in the human lung. Importantly, reemergence of CD73 in lung adenocarcinoma enriched in negative immune checkpoint molecules may serve as a novel therapeutic target.


5'-Nucleotidase/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Epithelial Cells/metabolism , Stem Cells/cytology , Animals , Cell Differentiation/physiology , Epithelial Cell Adhesion Molecule/metabolism , Humans , Lung/pathology , Lung Neoplasms/metabolism , Mesenchymal Stem Cells/metabolism , Mice
3.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L813-L830, 2020 04 01.
Article En | MEDLINE | ID: mdl-32073879

Our understanding of mesenchymal cell subsets and their function in human lung affected by aging and in certain disease settings remains poorly described. We use a combination of flow cytometry, prospective cell-sorting strategies, confocal imaging, and modeling of microvessel formation using advanced microfluidic chip technology to characterize mesenchymal cell subtypes in human postnatal and adult lung. Tissue was obtained from patients undergoing elective surgery for congenital pulmonary airway malformations (CPAM) and other airway abnormalities including chronic obstructive pulmonary disease (COPD). In microscopically normal postnatal human lung, there was a fivefold higher mesenchymal compared with epithelial (EpCAM+) fraction, which diminished with age. The mesenchymal fraction composed of CD90+ and CD90+CD73+ cells was enriched in CXCL12 and platelet-derived growth factor receptor-α (PDGFRα) and located in close proximity to EpCAM+ cells in the alveolar region. Surprisingly, alveolar organoids generated from EpCAM+ cells supported by CD90+ subset were immature and displayed dysplastic features. In congenital lung lesions, cystic air spaces and dysplastic alveolar regions were marked with an underlying thick interstitium composed of CD90+ and CD90+PDGFRα+ cells. In postnatal lung, a subset of CD90+ cells coexpresses the pericyte marker CD146 and supports self-assembly of perfusable microvessels. CD90+CD146+ cells from COPD patients fail to support microvessel formation due to fibrinolysis. Targeting the plasmin-plasminogen system during microvessel self-assembly prevented fibrin gel degradation, but microvessels were narrower and excessive contraction blocked perfusion. These data provide important new information regarding the immunophenotypic identity of key mesenchymal lineages and their change in a diverse setting of congenital lung lesions and COPD.


Immunomodulation/immunology , Mesenchymal Stem Cells/metabolism , Thy-1 Antigens/immunology , Thy-1 Antigens/metabolism , Adolescent , Biomarkers/metabolism , CD146 Antigen/immunology , CD146 Antigen/metabolism , Cell Separation/methods , Child , Child, Preschool , Epithelial Cell Adhesion Molecule/immunology , Epithelial Cell Adhesion Molecule/metabolism , Female , Humans , Immunologic Factors/immunology , Immunologic Factors/metabolism , Infant , Infant, Newborn , Male , Mesenchymal Stem Cells/immunology , Microvessels/immunology , Microvessels/metabolism , Pericytes/immunology , Pericytes/metabolism , Prospective Studies
4.
Oncogene ; 38(5): 622-636, 2019 01.
Article En | MEDLINE | ID: mdl-30171261

Oncogenic KRAS mutations comprise the largest subset of lung cancer defined by genetic alterations, but in the clinic no targeted therapies are available that effectively control mutational KRAS activation. Consequently, patients with KRAS-driven tumors are routinely treated with cytotoxic chemotherapy, which is often transiently effective owing to development of drug resistance. In this study, we show that hyperactivated mammalian target of rapamycin (mTOR) pathway is a characteristic hallmark of KRAS-mutant lung adenocarcinoma after chemotherapy treatment, and that KRAS-mutant lung cancer cells rely on persistent mTOR signaling to resist chemotherapeutic drugs. Coherently, mTOR inhibition circumvents the refractory phenotype and restores sensitivity of resistant KRAS-mutant lung cancer cells to chemotherapy. Importantly, drug combinations of clinically approved mTOR inhibitors and chemotherapy drugs synergize in inhibiting cell proliferation of KRAS-mutant cancer cells in vitro and in vivo, and the efficacy of this combination treatment correlates with the magnitude of mTOR activity induced by chemotherapy alone. These results pinpoint mTOR as a mechanism of resistance to chemotherapy in KRAS-mutant lung cancer and validate a rational and readily translatable strategy that combines mTOR inhibitors with standard chemotherapy to treat KRAS-mutant adenocarcinoma, the most common and deadliest lung cancer subset.


Adenocarcinoma of Lung/enzymology , Drug Resistance, Neoplasm , Lung Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins p21(ras)/genetics , TOR Serine-Threonine Kinases/genetics
5.
Neoplasia ; 21(2): 185-196, 2019 02.
Article En | MEDLINE | ID: mdl-30591423

Cell lines are essential tools to standardize and compare experimental findings in basic and translational cancer research. The current dogma states that cancer stem cells feature an increased tumor initiation capacity and are also chemoresistant. Here, we identified and comprehensively characterized three morphologically distinct cellular subtypes in the non-small cell lung cancer cell line A549 and challenge the current cancer stem cell dogma. Subtype-specific cellular morphology is maintained during short-term culturing, resulting in the formation of holoclonal, meroclonal, and paraclonal colonies. A549 holoclone cells were characterized by an epithelial and stem-like phenotype, paraclone cells featured a mesenchymal phenotype, whereas meroclone cells were phenotypically intermediate. Cell-surface marker expression of subpopulations changed over time, indicating an active epithelial-to-mesenchymal transition (EMT), in vitro and in vivo. EMT has been associated with the overexpression of the immunomodulators PD-L1 and PD-L2, which were 37- and 235-fold overexpressed in para- versus holoclone cells, respectively. We found that DNA methylation is involved in epigenetic regulation of marker expression. Holoclone cells were extremely sensitive to cisplatin and radiotherapy in vitro, whereas paraclone cells were highly resistant. However, inhibition of the receptor tyrosine kinase AXL, whose expression is associated with an EMT, specifically targeted the otherwise highly resistant paraclone cells. Xenograft tumor formation capacity was 24- and 269-fold higher in holo- than mero- and paraclone cells, respectively. Our results show that A549 subpopulations might serve as a unique system to explore the network of stemness, cellular plasticity, tumor initiation capacity, invasive and metastatic potential, and chemo/radiotherapy resistance.


Carcinoma, Non-Small-Cell Lung/pathology , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism , A549 Cells , Animals , Biomarkers , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Methylation , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling , Humans , Immunophenotyping , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Neoplastic Stem Cells/pathology , Transcriptome
6.
Sci Rep ; 7(1): 10636, 2017 09 06.
Article En | MEDLINE | ID: mdl-28878242

Pericytes represent important support cells surrounding microvessels found in solid organs. Emerging evidence points to their involvement in tumor progression and metastasis. Although reported to be present in the human lung, their specific presence and functional orientation within the tumor microenvironment in non-small cell lung cancer (NSCLC) has not yet been adequately studied. Using a multiparameter approach, we prospectively identified, sorted and expanded mesenchymal cells from human primary NSCLC samples based on co-expression of CD73 and CD90 while lacking hematopoietic and endothelial lineage markers (CD45, CD31, CD14 and Gly-A) and the epithelial marker EpCAM. Compared to their normal counterpart, tumor-derived Lineage-EpCAM-CD73+CD90+ cells showed enhanced expression of the immunosuppressive ligand PD-L1, a higher constitutive secretion of IL-6 and increased basal αSMA levels. In an in vitro model of 3D microvessels, both tumor-derived and matched normal Lineage-EpCAM-CD73+CD90+ cells supported the assembly of perfusable vessels. However, tumor-derived Lineage-EpCAM-CD73+CD90+ cells led to the formation of vessels with significantly increased permeability. Together, our data show that perivascular-like cells present in NSCLC retain functional abnormalities in vitro. Perivascular-like cells as an eventual target in NSCLC warrants further investigation.


B7-H1 Antigen/genetics , Capillary Permeability , Interleukin-6/biosynthesis , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Microvessels/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , 5'-Nucleotidase/metabolism , Biomarkers , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial Cell Adhesion Molecule/metabolism , Humans , Lung Neoplasms/pathology , Mesenchymal Stem Cells/metabolism , Pericytes/metabolism , Stromal Cells/metabolism , Thy-1 Antigens/metabolism , Transforming Growth Factor beta/metabolism
7.
Cancer Cell Int ; 16(1): 66, 2016.
Article En | MEDLINE | ID: mdl-27594806

BACKGROUND: Lung cancer causes the most cancer deaths worldwide, thus there is a urgent need to develop new treatment options. Concurrent chemoradiotherapy has become a common strategy for the treatment of non-resectable solid tumors including non-small cell lung cancer. Pemetrexed is a folic acid antagonist that inhibits the synthesis of precursor nucleotides, whereas ionizing radiation induces DNA damage, the repair of which is dependent on sufficiently high nucleotide levels. In the clinical setting, the pemetrexed-ionizing radiation combination therapy is administered concomitantly. We hypothesized that prolonged pretreatment with pemetrexed could be beneficial, as prior depletion of nucleotide pools could sensitize cancer cells to subsequent irradiation. METHODS: Non-small cell lung cancer A549 cells were treated with 1 µM pemetrexed for 72 h. In addition, cells were exposed to five gray ionizing radiation either 1, 48 or 71 h after the initiation of the pemetrexed treatment. Cell growth, senescence induction, cell cycle distribution and DNA damage marker accumulation were analysed at different time points during the treatment and the recovery phase. RESULTS: Stand-alone treatments of five gray ionizing radiation and 1 µM pemetrexed resulted in an intermediate cell growth inhibition of A549 cells and were therefore applied as the combination regimen. Prolonged pemetrexed pretreatment for 71 h resulted in a significant S-phase accumulation. Irradiation and prolonged pemetrexed pretreatment maximally delayed long term cell growth. Additionally, senescence was augmented and recovery from treatment-induced DNA damage was most prominently delayed by prolonged pemetrexed pretreatment. CONCLUSIONS: Pretreatment with pemetrexed increases anticancer efficiency of pemetrexed-ionizing radiation combination therapy, which correlates with a persistence of treatment-induced DNA damage. Therefore, this study warrants further investigations to elucidate whether a similar adaptation to the standard treatment regimen could enhance the effectiveness of the non-small cell lung cancer clinical treatment regimen.

8.
Stem Cell Res Ther ; 7: 25, 2016 Feb 09.
Article En | MEDLINE | ID: mdl-26861734

BACKGROUND: The soluble factors secreted by mesenchymal stem cells are thought to either support or inhibit tumor growth. Herein, we investigated whether the human lung-derived mesenchymal stem cell-conditioned medium (hlMSC-CM) exerts antitumor activity in malignant pleural mesothelioma cell lines H28, H2052 and Meso4. METHODS: hlMSC-CM was collected from the human lung-derived mesenchymal stem cells. Inhibition of tumor cell growth was based on the reduction of cell viability and inhibition of cell proliferation using the XTT and BrdU assays, respectively. Elimination of tumor spheroids was assessed by the anchorage-independent sphere formation assay. The cytokine profile of hlMSC-CM was determined by a chemiluminescence-based cytokine array. RESULTS: Our data showed that hlMSC-CM contains a broad range of soluble factors which include: cytokines, chemokines, hormones, growth and angiogenic factors, matrix metalloproteinases, metalloproteinase inhibitors and cell-cell mediator proteins. The 48- and 72-hour hlMSC-CM treatments of H28, H2052 and Meso4 cell lines elicited significant decreases in cell viability and inhibited cell proliferation. The 72-hour hlMSC-CM incubation of H28 cells completely eliminated the drug-resistant sphere-forming cells, which is more potent than twice the half maximal inhibitory concentration of cisplatin. CONCLUSIONS: Our findings indicate that the cell-free hlMSC-CM confers in vitro antitumor activities via soluble factors in the tested mesothelioma cells and, hence, may serve as a therapeutic tool to augment the current treatment strategies in malignant pleural mesothelioma.


Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , Mesenchymal Stem Cells/metabolism , Mesothelioma/drug therapy , Pleural Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Culture Media, Conditioned/chemistry , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Lung/pathology , Mesothelioma, Malignant
9.
BMC Cancer ; 16: 125, 2016 Feb 19.
Article En | MEDLINE | ID: mdl-26895954

BACKGROUND: Lung cancer is the leading cause of cancer-related mortality, and new therapeutic options are urgently needed. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers, with the current standard regimen of care for NSCLC including chemotherapy with pemetrexed as a single agent or in combination with platinum-based agents, e.g. cisplatin. Pemetrexed is a folic acid antagonist that inhibits the synthesis of precursor nucleotides, whereas cisplatin directly induces DNA adducts, the repair of which is dependent on sufficiently high nucleotide levels. In the clinical setting, the pemetrexed-cisplatin combination therapy is administered concomitantly. We hypothesized that prolonged pretreatment with pemetrexed could be beneficial, as prior depletion of nucleotide pools could sensitize cancer cells to subsequent treatment with cisplatin. METHODS: NSCLC A549 and H460 cells were treated with pemetrexed for 72 h. In addition, 24 h of cisplatin treatment was initiated at day 1, 2 or 3 resulting in either simultaneous pemetrexed application or pemetrexed pretreatment for 24 or 48 h, respectively. Cell growth and colony formation as well as senescence induction were quantified after treatment. Cell cycle distribution and phosphorylation of histone variant H2AX as a surrogate marker for DNA damage was quantified by flow cytometry. Relative changes in gene expression were determined by quantitative real time PCR. RESULTS: Prolonged pemetrexed pretreatment for 48 h prior to cisplatin treatment maximally delayed long-term cell growth and significantly reduced the number of recovering clones. Moreover, apoptosis and senescence were augmented and recovery from treatment-induced DNA damage was delayed. Interestingly, a cell population was identified that displayed an epithelial-to-mesenchymal transition (EMT) and which had a stem cell phenotype. This population was highly resistant to concomitant pemetrexed-cisplatin treatment but was sensitized by pemetrexed pretreatment. CONCLUSIONS: Adaptation of the standard treatment schedule to include pretreatment with pemetrexed optimizes the anticancer efficiency of pemetrexed-cisplatin combination therapy, which correlates with a persistence of treatment-induced DNA damage. Therefore, this study warrants further investigations to elucidate whether such an adaptation could enhance the effectiveness of the standard clinical treatment regimen. In addition, a subpopulation of therapy resistant cells with EMT and cancer stem cell features was identified that was resistant to the standard treatment regimen but sensitive to pemetrexed pretreatment combined with cisplatin.


Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , DNA Damage , Lung Neoplasms/drug therapy , Pemetrexed/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cellular Senescence/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplastic Stem Cells/drug effects
10.
BMC Cancer ; 14: 304, 2014 Apr 30.
Article En | MEDLINE | ID: mdl-24884875

BACKGROUND: Conventional chemotherapy in malignant pleural mesothelioma (MPM) has minimal impact on patient survival due to the supposed chemoresistance of cancer stem cells (CSCs). We sought to identify a sub-population of chemoresistant cells by using putative CSC markers, aldehyde dehydrogenase (ALDH) and CD44 in three MPM cell lines; H28, H2052 and Meso4. METHODS: The Aldefluor assay was used to measure ALDH activity and sort ALDH(high) and ALDH(low) cells. Drug-resistance was evaluated by cell viability, anchorage-independent sphere formation, flow-cytometry and qRT-PCR analyses. RESULTS: The ALDH(high) - and ALDH(low) -sorted fractions were able to demonstrate phenotypic heterogeneity and generate spheres, the latter being less efficient, and both showed an association with CD44. Cis- diamminedichloroplatinum (II) (cisplatin) treatment failed to reduce ALDH activity and conferred only a short-term inhibition of sphere generation in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. Induction of drug sensitivity by an ALDH inhibitor, diethylaminobenzaldehyde (DEAB) resulted in significant reductions in cell viability but not a complete elimination of the sphere-forming cells, suggestive of the presence of a drug-resistant subpopulation. At the transcript level, the cisplatin + DEAB-resistant cells showed upregulated mRNA expression levels for ALDH1A2, ALDH1A3 isozymes and CD44 indicating the involvement of these markers in conferring chemoresistance in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. CONCLUSIONS: Our study shows that ALDH(high) CD44(+) cells are implicated in conveying tolerance to cisplatin in the three MPM cell lines. The combined use of CD44 and ALDH widens the window for identification and targeting of a drug-resistant population which may improve the current treatment modalities in mesothelioma.


Aldehyde Oxidoreductases/biosynthesis , Cisplatin/administration & dosage , Hyaluronan Receptors/metabolism , Lung Neoplasms/genetics , Mesothelioma/genetics , Retinal Dehydrogenase/biosynthesis , Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Hyaluronan Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mesothelioma/drug therapy , Mesothelioma/pathology , Mesothelioma, Malignant , Neoplastic Stem Cells/metabolism , Phenotype
...