Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Am Heart Assoc ; 10(21): e022095, 2021 11 02.
Article En | MEDLINE | ID: mdl-34713715

Background Recent data suggest that systemic inflammation can negatively affect atrioventricular conduction, regardless of acute cardiac injury. Indeed, gap-junctions containing connexin43 coupling cardiomyocytes and inflammation-related cells (macrophages) are increasingly recognized as important factors regulating the conduction in the atrioventricular node. The aim of this study was to evaluate the acute impact of systemic inflammatory activation on atrioventricular conduction, and elucidate underlying mechanisms. Methods and Results We analyzed: (1) the PR-interval in patients with inflammatory diseases of different origins during active phase and recovery, and its association with inflammatory markers; (2) the existing correlation between connexin43 expression in the cardiac tissue and peripheral blood mononuclear cells (PBMC), and the changes occurring in patients with inflammatory diseases over time; (3) the acute effects of interleukin(IL)-6 on atrioventricular conduction in an in vivo animal model, and on connexin43 expression in vitro. In patients with elevated C-reactive protein levels, atrioventricular conduction indices are increased, but promptly normalized in association with inflammatory markers reduction, particularly IL-6. In these subjects, connexin43 expression in PBMC, which is correlative of that measured in the cardiac tissue, inversely associated with IL-6 changes. Moreover, direct IL-6 administration increased atrioventricular conduction indices in vivo in a guinea pig model, and IL-6 incubation in both cardiomyocytes and macrophages in culture, significantly reduced connexin43 proteins expression. Conclusions The data evidence that systemic inflammation can acutely worsen atrioventricular conduction, and that IL-6-induced down-regulation of cardiac connexin43 is a mechanistic pathway putatively involved in the process. Though reversible, these alterations could significantly increase the risk of severe atrioventricular blocks during active inflammatory processes.


Atrioventricular Block , Connexin 43 , Animals , Atrioventricular Node , Cytokines , Guinea Pigs , Humans , Inflammation , Interleukin-6 , Leukocytes, Mononuclear
2.
BMC Infect Dis ; 21(1): 566, 2021 Jun 14.
Article En | MEDLINE | ID: mdl-34126960

BACKGROUND: Vitamin D deficiency has been suggested to favor a poorer outcome of Coronavirus disease-19 (COVID-19). We aimed to assess if 25-hydroxyvitamin-D (25OHD) levels are associated with interleukin 6 (IL-6) levels and with disease severity and mortality in COVID-19. METHODS: We prospectively studied 103 in-patients admitted to a Northern-Italian hospital (age 66.1 ± 14.1 years, 70 males) for severely-symptomatic COVID-19. Fifty-two subjects with SARS-CoV-2 infection but mild COVID-19 symptoms (mildly-symptomatic COVID-19 patients) and 206 subjects without SARS-CoV-2 infection were controls. We measured 25OHD and IL-6 levels at admission and focused on respiratory outcome during hospitalization. RESULTS: Severely-symptomatic COVID-19 patients had lower 25OHD levels (18.2 ± 11.4 ng/mL) than mildly-symptomatic COVID-19 patients and non-SARS-CoV-2-infected controls (30.3 ± 8.5 ng/mL and 25.4 ± 9.4 ng/mL, respectively, p < 0.0001 for both comparisons). 25OHD and IL-6 levels were respectively lower and higher in severely-symptomatic COVID-19 patients admitted to intensive care Unit [(ICU), 14.4 ± 8.6 ng/mL and 43.0 (19.0-56.0) pg/mL, respectively], than in those not requiring ICU admission [22.4 ± 1.4 ng/mL, p = 0.0001 and 16.0 (8.0-32.0) pg/mL, p = 0.0002, respectively]. Similar differences were found when comparing COVID-19 patients who died in hospital [13.2 ± 6.4 ng/mL and 45.0 (28.0-99.0) pg/mL] with survivors [19.3 ± 12.0 ng/mL, p = 0.035 and 21.0 (10.5-45.9) pg/mL, p = 0.018, respectively). 25OHD levels inversely correlated with: i) IL-6 levels (ρ - 0.284, p = 0.004); ii) the subsequent need of the ICU admission [relative risk, RR 0.99, 95% confidence interval (95%CI) 0.98-1.00, p = 0.011] regardless of age, gender, presence of at least 1 comorbidity among obesity, diabetes, arterial hypertension, creatinine, IL-6 and lactate dehydrogenase levels, neutrophil cells, lymphocytes and platelets count; iii) mortality (RR 0.97, 95%CI, 0.95-0.99, p = 0.011) regardless of age, gender, presence of diabetes, IL-6 and C-reactive protein and lactate dehydrogenase levels, neutrophil cells, lymphocytes and platelets count. CONCLUSION: In our COVID-19 patients, low 25OHD levels were inversely correlated with high IL-6 levels and were independent predictors of COVID-19 severity and mortality.


COVID-19/blood , COVID-19/mortality , SARS-CoV-2/genetics , Severity of Illness Index , Vitamin D/analogs & derivatives , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , Calcifediol/administration & dosage , Comorbidity , Diabetes Mellitus/epidemiology , Female , Humans , Hypertension/epidemiology , Intensive Care Units , Interleukin-6/blood , Italy/epidemiology , Male , Middle Aged , Obesity/epidemiology , Patient Admission , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Vitamin D/blood , Vitamin D Deficiency/complications , Vitamins/administration & dosage
3.
J Clin Endocrinol Metab ; 105(8)2020 08 01.
Article En | MEDLINE | ID: mdl-32392277

CONTEXT: Paget disease of bone (PDB) is a metabolic bone disease whose genetic cause remains unknown in up to 50% of familial patients. OBJECTIVE: Our aim was to investigate the underlying genetic defect in a large pedigree with a severe, early onset, autosomal dominant form of PDB across 3 generations. METHODS: Whole exome sequencing was performed in affected and unaffected family members, and then mutation screening was replicated in a sample of PDB patients with early-onset, polyostotic PDB. RESULTS: We identified a frameshift D107Rfs*3 mutation in PFN1 (encoding for profilin 1, a highly conserved regulator of actin-polymerization and cell motility) causing the truncation of the C-terminal part of the protein. The mutation was also detected in a 17-year-old asymptomatic family member who upon biochemical and radiological analyses was indeed found to be affected. Sequencing of the entire PFN1 coding region in unrelated PDB patients identified the same mutation in 1 patient. All mutation carriers had a reduced response to bisphosphonates, requiring multiple zoledronate infusions to control bone pain and achieve biochemical remission over a long term. In vitro osteoclastogenesis in peripheral blood mononuclear cells (PBMCs) from mutation carriers showed a higher number of osteoclasts with PDB-like features. A similar phenotype was observed upon PFN1 silencing in murine bone marrow-derived monocytes, suggesting that the frameshift PFN1 mutation confers a loss of function in profilin 1 activity that induces PDB-like features in the osteoclasts, likely due to enhanced cell motility and actin ring formation. CONCLUSIONS: Our findings indicate that PFN1 mutation causes an early onset, polyostotic PDB-like disorder.


Osteitis Deformans/genetics , Osteogenesis/genetics , Profilins/genetics , Adolescent , Adult , Age of Onset , Bone and Bones/diagnostic imaging , DNA Mutational Analysis , Frameshift Mutation , Gene Silencing , Heterozygote , Humans , Middle Aged , Monocytes , Osteitis Deformans/diagnosis , Pedigree , Primary Cell Culture , Radiography , Severity of Illness Index , Exome Sequencing , Young Adult
...