Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Endocr J ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38811189

Endothelial-to-mesenchymal transition (EndMT) is a pivotal event in diabetic retinopathy (DR). This study explored the role of circRNA zinc finger protein 532 (circZNF532) in regulating EndMT in DR progression. Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to induce the DR cell model. Actinomycin D-treated HRMECs were used to confirm the mRNA stability of phosphoinositide-3 kinase catalytic subunit δ (PIK3CD). The interaction between TATA-box-binding protein-associated factor 15 (TAF15) and circZNF532/PIK3CD was subsequently analyzed using RNA immunoprecipitation (RIP), RNA pull-down. It was found that HG treatment accelerated EndMT process, facilitated cell migration and angiogenesis, and enhanced PIK3CD and p-AKT levels in HRMECs, whereas si-circZNF532 transfection neutralized these effects. Further data showed that circZNF532 recruited TAF15 to stabilize PIK3CD, thus elevating PIK3CD expression. Following rescue experiments suggested that PIK3CD overexpression partially negated the inhibitory effect of circZNF532 silencing on EndMT, migration, and angiogenesis of HG-treated HRMECs. In conclusion, our results suggest that circZNF532 recruits TAF15 to stabilize PIK3CD, thereby facilitating EndMT in DR.

2.
Phytomedicine ; 129: 155566, 2024 Jul.
Article En | MEDLINE | ID: mdl-38565001

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE: We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS: The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS: XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS: XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.


Brain Injuries, Traumatic , Brain-Derived Neurotrophic Factor , Drugs, Chinese Herbal , Hippocampus , MicroRNAs , Neuronal Plasticity , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , MicroRNAs/metabolism , Brain Injuries, Traumatic/drug therapy , Drugs, Chinese Herbal/pharmacology , Neuronal Plasticity/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Male , Rats , Neuroprotective Agents/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Disease Models, Animal , Receptor, trkB/metabolism
3.
J Cell Physiol ; 239(5): e31213, 2024 May.
Article En | MEDLINE | ID: mdl-38308641

Recent studies have shown that nucleophagy can mitigate DNA damage by selectively degrading nuclear components protruding from the nucleus. However, little is known about the role of nucleophagy in neurons after spinal cord injury (SCI). Western blot analysis and immunofluorescence were performed to evaluate the nucleophagy after nuclear DNA damage and leakage in SCI neurons in vivo and NSC34 expression in primary neurons cultured with oxygen-glucose deprivation (OGD) in vitro, as well as the interaction and colocalization of autophagy protein LC3 with nuclear lamina protein Lamin B1. The effect of UBC9, a Small ubiquitin-related modifier (SUMO) E2 ligase, on Lamin B1 SUMOylation and nucleophagy was examined by siRNA transfection or 2-D08 (a small-molecule inhibitor of UBC9), immunoprecipitation, and immunofluorescence. In SCI and OGD injured NSC34 or primary cultured neurons, neuronal nuclear DNA damage induced the SUMOylation of Lamin B1, which was required by the nuclear Lamina accumulation of UBC9. Furthermore, LC3/Atg8, an autophagy-related protein, directly bound to SUMOylated Lamin B1, and delivered Lamin B1 to the lysosome. Knockdown or suppression of UBC9 with siRNA or 2-D08 inhibited SUMOylation of Lamin B1 and subsequent nucleophagy and protected against neuronal death. Upon neuronal DNA damage and leakage after SCI, SUMOylation of Lamin B1 is induced by nuclear Lamina accumulation of UBC9. Furthermore, it promotes LC3-Lamin B1 interaction to trigger nucleophagy that protects against neuronal DNA damage.


Autophagy , DNA Damage , Lamin Type B , Neurons , Spinal Cord Injuries , Sumoylation , Ubiquitin-Conjugating Enzymes , Animals , Mice , Cell Nucleus/metabolism , Lamin Type B/metabolism , Lamin Type B/genetics , Neurons/metabolism , Neurons/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Mice, Inbred C57BL , Cell Line, Tumor
4.
Front Endocrinol (Lausanne) ; 15: 1278477, 2024.
Article En | MEDLINE | ID: mdl-38405149

Introduction: Beta-amyloid accumulation in the brain appears to be a key initiating event in Alzheimer's disease (AD), and factors associated with increased deposition of beta-amyloid are of great interest. Enhanced deposition of amyloid-ß peptides is due to an imbalance between their production and elimination. Previous studies show that diminished levels of CSF amyloid beta 42 (Aß42) is a biomarker in AD; however, the role of serum Aß42 in AD is contradictory. BMI and obesity have been reported to be related to increased serum Aß42 levels. Therefore, we aimed to investigate the relation between metabolic syndrome (MetS), its clinical measures (abdominal obesity, high glucose, high triglyceride, low high-density lipoprotein cholesterol level, and hypertension), and serum Aß42 levels. Methods: A total of 1261 subjects, aged 18-89 years in Chengdu, China, were enrolled from January 2020 to January 2021 to explore the correlation of serum Aß42 levels with body mass index (BMI), blood lipids, and blood pressure. Furthermore, as the risk of MetS is closely related to age, 1,212 participants (N = 49 with age ≥ 80 years old were excluded) were analyzed for the correlation of serum Aß42 level and MetS clinical measures. Results: The results showed that log-transformed serum Aß42 level was positively correlated with BMI (R = 0.29; p < 0.001), log-transformed triglyceride (R = 0.14; p < 0.001), and diastolic blood pressure (DBP) (R = 0.12; p < 0.001) and negatively correlated with high-density lipoprotein (HDL-c) (R = -0.18; p < 0.001). After adjusting for age, sex, and other covariates, elevated serum Aß42 level was correlated with higher values of BMI (ßmodel1 = 2.694, ßmodel2 = 2.703) and DBP (ßmodel1 = 0.541, ßmodel2 = 0.546) but a lower level of HDL-c (ßmodel2 = -1.741). Furthermore, serum Aß42 level was positively correlated with MetS and its clinical measures, including BMI and DBP, and negatively correlated with HDL-c level in the Han Chinese population. However, the level of serum Aß42 did not show a significant correlation with high glucose or high triglyceride. Discussion: These observations indicate that MetS and its components are associated with higher levels of serum Aß42 and hence limit the potential of serum Aß42 as a suitable diagnostic biomarker for AD. As such, we recommend serum Aß42 serve as a direct risk biomarker for MetS rather than for AD.


Alzheimer Disease , Metabolic Syndrome , Humans , Aged, 80 and over , Amyloid beta-Peptides , Obesity/epidemiology , Triglycerides , Lipoproteins, HDL , Biomarkers , Glucose
6.
Free Radic Biol Med ; 212: 133-148, 2024 02 20.
Article En | MEDLINE | ID: mdl-38142951

Spinal cord injury (SCI) presents profound ramifications for patients, leading to diminished motor and sensory capabilities distal to the lesion site. Once SCI occurs, it not only causes great physical and psychological problems for patients but also imposes a heavy economic burden. Ezrin is involved in various cellular processes, including signal transduction, cell death, inflammation, chemotherapy resistance and the stress response. However, whether Ezrin regulates functional repair after SCI and its underlying mechanism has not been elucidated. Here, our results showed that there is a marked augmentation of Ezrin levels within neurons and Ezrin inhibition markedly diminished glial scarring and bolstered functional recuperation after SCI. RNA sequencing indicated the potential involvement of pyroptosis, oxidative stress and autophagy in the enhancement of functional recovery upon reduced Ezrin expression. Moreover, the inhibition of Ezrin expression curtailed pyroptosis and oxidative stress by amplifying autophagy. Our studies further demonstrated that Ezrin inhibition promoted autophagy by increasing TFEB activity via the Akt-TRPML1-calcineurin pathway. Finally, we concluded that inhibiting Ezrin expression alleviates pyroptosis and oxidative stress by enhancing TFEB-driven autophagy, thereby promoting functional recovery after SCI, which may be a promising therapeutic target for SCI treatment.


Cytoskeletal Proteins , Pyroptosis , Spinal Cord Injuries , Humans , Calcineurin/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Oxidative Stress/physiology , Autophagy
7.
Environ Res ; 244: 117969, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38109956

Alkaline pre-treatment is known to enhance the acid production efficiency of sludge but adversely affects its dewatering performance. In this study, the improvement of sludge dewaterability by a novel bioleaching system with inoculating domesticated acidified sludge (AS) and its underlying mechanism were investigated. The results showed that although the addition of Fe2+ and the reduction of pH improved the dewatering performance of sludge, their effects were inferior to that of AS + Fe. The addition of AS and Fe2+ significantly reduced the specific resistance to filtration and capillary suction time of the sludge by 98.6 % and 95.5 %, respectively. This improvement in dewatering performance was achieved through the combined actions of bio-acidification, bio-oxidation, and bio-flocculation. Remarkably, under alkaline pH, microorganisms in AS remained active, leading to the formation of iron-based bioflocculants, along with a rapid pH decrease. These bioflocculants, in combination with protein (PN) in tightly bound extracellular polymeric substances (TB-EPS) through amide bonding, transformed TB-EPS from extractable to non-extractable form, reducing PN content from 12.1 mg g-1DS to 5.09 mg g-1DS and altering the protein's secondary structure. Consequently, the gel-like TB-EPS matrix effectively broke down, releasing cellular water and significantly enhancing sludge dewaterability.


Sewage , Water , Water/chemistry , Iron/chemistry , Filtration , Oxidation-Reduction , Waste Disposal, Fluid/methods
8.
Clin Lab ; 69(12)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38084697

BACKGROUND: Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is a rare hyper-inflammatory syndrome caused by mutations in STXBP2. Most cases present at 2 - 6 months of age, and FHL-5 is extremely rare in neonates. METHODS: Appropriate laboratory tests, abdominal ultrasonography and whole exome sequencing were carried out. Respiratory support, antibiotics, and transfusion of blood products were done. RESULTS: Laboratory tests revealed metabolic acidosis, thrombocytopenia, mild anemia, and low fibrinogen level. Blood culture, metagenomics, and TORCH screening were negative. Liver and spleen enlargements were confirmed by abdominal ultrasonography. Whole exome sequencing identified a homozygous mutation in STXBP2 c. 1432del G (p. V478Sfs*5). The heterozygous STXBP2 mutation was identified in the paternal grandfather, maternal grandfather, and parents. CONCLUSIONS: Here we report a case with a novel homozygous deletion in exon 16 of STXBP2, which caused the earliest reported case of FHL-5 in a neonate. Our results identify a new pathogenic variant for the early identification and clinical consultation of FHL-5.


Lymphohistiocytosis, Hemophagocytic , Infant, Newborn , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Homozygote , Sequence Deletion , Mutation , Munc18 Proteins/genetics
9.
Chemosphere ; 339: 139714, 2023 Oct.
Article En | MEDLINE | ID: mdl-37543234

Improving the dewatering performance of sewage sludge is of great scientific and engineering significance in the context of accelerated urbanization and increasingly strict environmental regulations. Acidified sludge (AS) can improve sludge dewatering performance, but the dewatering effect of repeated inoculation is unclear. The effects of long-term repeated inoculation of AS on the sludge dewaterability were investigated. The molecular structure and microbial community succession of extracellular polymeric substances (EPS) are emphasized. The results revealed that increasing the inoculation ratio of AS reduced the pH, absolute value of sludge zeta potential, and sludge particle size, and the decreasing trend was more evident with prolonging treatment time. Under the conditions of 30% and 50% AS inoculation, the dewatering performance of the sludge was significantly improved (p < 0.05). Compared with the raw sludge, the specific resistance of filtration (SRF) and capillary suction time of 30% inoculation were reduced by 64.3% and 50.1% after 30 cycles, respectively. Excluding loosely bound (LB)-EPS, soluble (S)-EPS and tightly bound (TB)-EPS exhibited a visible decrease, the protein in TB-EPS was significantly related to sludge dewaterability (p < 0.05). The fluorescent components of aromatic protein and fulvic acid-like substances in TB-EPS were significantly associated with SRF, with a correlation coefficient 0.99 (p < 0.05). Both the increase in the percentages of random coil and decrease in α-helix in TB-EPS contributed to improving dewaterability. Increasing Firmicutes and decreasing Chloroflexi levels improved the sludge dewatering capacity. Repeated inoculation did not disrupt the dewatering effect of AS rather increased the feasibility of the engineering application of AS. Considering the dewatering performance and cost synthetically, 30% AS inoculated ratio is feasible for practical applications.


Extracellular Polymeric Substance Matrix , Sewage , Sewage/chemistry , Molecular Structure , Water/chemistry , Proteins/chemistry , Waste Disposal, Fluid/methods
10.
AMB Express ; 13(1): 85, 2023 Aug 12.
Article En | MEDLINE | ID: mdl-37573278

Enterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.

11.
Small ; 19(49): e2303457, 2023 Dec.
Article En | MEDLINE | ID: mdl-37394714

Water-induced parasitic reactions and uncontrolled dendritic Zn growth are long-lasting tricky problems that severely hinder the development of aqueous zinc-metal batteries. Those notorious issues are closely related to electrolyte configuration and zinc-ion transport behavior. Herein, through constructing aligned dipoles induced electric-field on Zn surface, both the solvation structure and transport behavior of zinc-ions are fundamentally changed. The vertically ordered zinc-ion migration trajectory and gradually concentrated zinc-ion achieved inside the polarized electric-field remarkably eliminate water related side-reactions and Zn dendrites. Zn-metal under the polarized electric-field demonstrated significantly improve reversibility and a dendrite-free surface with strong (002) Zn deposition texturing. Zn||Zn symmetric cell delivers greatly prolonged lifespan up to 1400 h (17 times longer than that of the cell based on bare Zn) while the Zn||Cu half-cell demonstrate ultrahigh 99.9% coulombic efficiency. NH4 V4 O10 ||Zn half-cell delivered exceptional-high 132 mAh g-1 capacity after ultralong 2000 cycles (≈100% capacity retention). In addition, MnO2 ||Zn pouch-cell under aligned dipoles induced electric-field maintains 87.9% capacity retention after 150 cycles under practical condition of high MnO2 mass loading (≈10 mg cm-2 ) and limited N/P ratio. It is considered that this new strategy can also be implemented to other metallic batteries and spur the development of batteries with long-lifespan and high-energy-density.

12.
Sci Rep ; 13(1): 11807, 2023 07 21.
Article En | MEDLINE | ID: mdl-37479790

Circular RNAs (circRNAs) play a role in sepsis-related autophagy. However, the role of circRNAs in autophagy after sepsis-induced cardiomyopathy (SICM) is unknown, so we explored the circRNA expression profiles associated with autophagy in an acute sepsis mouse model. At a dose of 10 mg/kg, mice were intraperitoneally administered with lipopolysaccharides. The myocardial tissue was harvested after 6 h for microarray analysis, qRT-PCR, and western blotting. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were evaluated, and a competing endogenous RNA network was constructed, to evaluate the role of circRNAs related to autophagy in SICM. In total, 1,735 differently expressed circRNAs were identified in the LPS-treated group, including 990 upregulated and 745 downregulated circRNAs. The expression level of the autophagy-specific protein p62 decreased, while the ratio of LC3 II to LC3 I increased. Additionally, 309 mRNAs and 187 circRNAs were correlated with autophagy in myocardial tissue after SICM. Of these, 179 circRNAs were predicted to function as "miRNA sponges". Some distinctive circRNAs and mRNAs found by ceRNA analysis might be involved in autophagy in SICM. These findings provide insights into circRNAs and identified new research targets that may be used to further explore the pathogenesis of SICM.


Cardiomyopathies , MicroRNAs , Sepsis , Animals , Mice , RNA, Circular/genetics , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/genetics , Autophagy/genetics , Lipopolysaccharides , MicroRNAs/genetics , RNA, Messenger
13.
Sci Bull (Beijing) ; 68(12): 1283-1294, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37258378

Metallic Zn represents as a primary choice in fabricating various aqueous Zn-ion batteries (ZIBs), however challenging issues including dendrite growth and parasitic reactions at the anode/electrolyte interface, considerably hamper its practical implementation in large-scale energy storage. Herein, we report a low-cost multifunctional ion rectifier (IRT) as an artificial intermediate to reform Zn anode, which can practically eliminate the above issues. The hydrophobic shell (polyvinylidene difluoride) can suppress Zn interfacial corrosion with an inhibition efficiency of 94.8% by repelling water molecules from the bulk electrolyte. Additionally, negatively-charged ion channels inside the zincophilic core (ultrathin vermiculite sheets) induce de-solvating redistribution effect on Zn2+ ions flux, enabling a high ions transference number (0.79) for dendrite-free Zn deposition. This leads to exceptional Zn/Zn2+ reversibility in metallic Zn with IRT stabilization. The remarkable Coulombic efficiency (99.8%, 2000 cycles) for asymmetrical batteries, and a long lifespan (1600 h) with ultrahigh cumulative capacity of 2400 mAh cm-2 for symmetrical batteries, are successfully achieved. More encouragingly, the Zn//NH4V4O10 pouch cell retains 94.3% of its original capacity after 150 cycles at 1 A g-1. We believe that this low-cost and high-efficiency tactic could pave a promising path for anode surface modification.

14.
Am J Transl Res ; 15(3): 1730-1743, 2023.
Article En | MEDLINE | ID: mdl-37056847

OBJECTIVES: The immune cell infiltration (ICI) in the tumor microenvironment (TME) can provide a reference for prognosis after immunotherapy. We aim to establish an ICI scoring model and evaluate its predictive ability for the immunotherapy efficacy and the prognosis in lung adenocarcinoma (LUAD) patients. METHODS: We developed and analyzed the landscape of infiltrative immune cells based on the CIBERSORT and ESTIMATE algorithms. Then, three clusters of LUAD patients were discerned from TCGA-LUAD and GSE11969 data. Furthermore, two gene clusters were classified based on the PCA. RESULTS: LUAD patients with better prognoses tend to have higher immune checkpoint expression and immune/stromal scores. There is a correlation between TMB and ICI, and their relationship deserves further exploration. Moreover, the early-stage and male patients with high ICI scores have more prolonged survival. CONCLUSIONS: The feasibility of the ICI score model in evaluating prognosis after immune checkpoint therapy for LUAD patients was verified, specifically reflected in the screening of sensitive immune checkpoints as a treatment reference. The scoring system can accurately predict the overall survival of LUAD patients, which has clinical value to monitor disease and evaluate prognosis.

15.
Small ; 19(21): e2207764, 2023 May.
Article En | MEDLINE | ID: mdl-36869407

Lithium-metal shows promising prospects in constructing various high-energy-density lithium-metal batteries (LMBs) while long-lasting tricky issues including the uncontrolled dendritic lithium growth and infinite lithium volume expansion seriously impede the application of LMBs. In this work, it is originally found that a unique lithiophilic magnetic host matrix (Co3 O4 -CCNFs) can simultaneously eliminate the uncontrolled dendritic lithium growth and huge lithium volume expansion that commonly occur in typical LMBs. The magnetic Co3 O4 nanocrystals which inherently embed on the host matrix act as nucleation sites and can also induce micromagnetic field and facilitate a targeted and ordered lithium deposition behavior thus, eliminating the formation of dendritic Li. Meanwhile, the conductive host can effectively homogenize the current distribution and Li-ion flux, thus, further relieving the volume expansion during cycling. Benefiting from this, the featured electrodes demonstrate ultra-high coulombic efficiency of 99.1% under 1 mA cm-2 and 1 mAh cm-2 . Symmetric cell under limited Li (10 mAh cm-2 ) inspiringly delivers ultralong cycle life of 1600 h (under 2 mA cm-2 , 1 mAh cm-2 ). Moreover, LiFePO4 ||Co3 O4 -CCNFs@Li full-cell under practical condition of limited negative/positive capacity ratio (2.3:1) can deliver remarkably improved cycling stability (with 86.6% capacity retention over 440 cycles).

16.
Diabet Med ; 40(9): e15077, 2023 09.
Article En | MEDLINE | ID: mdl-36861382

BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes mellitus that poses a threat to adults. MicroRNAs (miRNAs) play a key role in DR progression. However, the role and mechanism of miR-192-5p in DR remain unclear. We aimed to investigate the effect of miR-192-5p on cell proliferation, migration and angiogenesis in DR. METHODS: Expression of miR-192-5p, ELAV-like RNA binding protein 1 (ELAVL1) and phosphoinositide 3-kinase delta (PI3Kδ) in human retinal fibrovascular membrane (FVM) samples and human retinal microvascular endothelial cells (HRMECs) was assessed using RT-qPCR. ELAVL1 and PI3Kδ protein levels were evaluated by Western blot. RIP and dual luciferase reporter assays were performed to confirm the miR-192-5p/ELAVL1/PI3Kδ regulatory networks. Cell proliferation, migration and angiogenesis were assessed by CCK8, transwell and tube formation assays. RESULTS: MiR-192-5p was decreased in FVM samples from DR patients and high glucose (HG)-treated HRMECs. Functionally, overexpressed miR-192-5p inhibited cell proliferation, migration and angiogenesis in HG-treated HRMECs. Mechanically, miR-192-5p directly targeted ELAVL1 and decreased its expression. We further verified that ELAVL1 bound to PI3Kδ and maintained PI3Kδ mRNA stability. Rescue analysis demonstrated that the suppressive effects of HG-treated HRMECs caused by miR-192-5p up-regulation were overturned by overexpressed ELAVL1 or PI3Kδ. CONCLUSION: MiR-192-5p attenuates DR progression by targeting ELAVL1 and reducing PI3Kδ expression, suggesting a biomarker for the treatment of DR.


Diabetes Mellitus , Diabetic Retinopathy , MicroRNAs , Adult , Humans , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Up-Regulation , Endothelial Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/pharmacology , Cell Proliferation/genetics , Diabetes Mellitus/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism
17.
Biochem Genet ; 61(5): 2076-2091, 2023 Oct.
Article En | MEDLINE | ID: mdl-36939972

Diabetic retinopathy (DR) is one of the leading causes of blindness in diabetic patients. However, the pathogenesis of DR is complex, and no firm conclusions have been drawn so far. It has become a hot spot in ophthalmology research to deeply study the mechanism of DR pathological changes and find effective treatment options. Human retinal microvascular endothelial cells (HRMECs) were induced by high glucose (HG) to construct DR cell model. CCK-8 assay was used to detect the viability of HRMECs. Transwell assay was used to detect the migration ability of HRMECs. Tube formation assay was used to identify the tube formation ability of HRMECs. The expressions of USP14, ATF2 and PIK3CD were detected by Western blot analysis and qRT-PCR assay. Immunoprecipitation (IP) was used to ascertain the relationship of USP14 and ATF2. To explore the regulatory relationship between ATF2 and PIK3CD by dual-luciferase reporter gene assay and Chromatin immunoprecipitation (ChIP) assay. High glucose treatment promoted the proliferation, migration, and tube formation of HRMEC, and the expressions of USP14, ATF2 and PIK3CD were significantly up-regulated. USP14 or ATF2 knockdown inhibited HG-induced HRMECs proliferation, migration, and tube formation. USP14 regulated the expression of ATF2, and ATF2 promoted PIK3CD expression. PIK3CD overexpression attenuated the inhibitory effectiveness of USP14 knockdown on proliferation, migration and tube formation of DR cell model. Here, we revealed that USP14 regulated the ATF2/PIK3CD axis to promote proliferation, migration, and tube formation in HG-induced HRMECs.


Diabetes Mellitus , Diabetic Retinopathy , MicroRNAs , Humans , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Cell Proliferation/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Endothelial Cells/metabolism , Glucose , MicroRNAs/genetics , Retina/metabolism , Retina/pathology , Ubiquitin Thiolesterase/metabolism
18.
Inflamm Regen ; 43(1): 12, 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36782279

BACKGROUND: Spinal cord injury (SCI) causes nearly all patients to suffer from protracted disabilities. An emerging therapeutic strategy involving the recruitment of endogenous neural stem cells (NSCs) has been developed. However, endogenous NSCs in the adult spinal cord differentiate into mostly astrocytes after traumatic injury, forming glial scars, which is a major cause of regeneration failure in SCI. Thus, understanding which factors drive the activation and differentiation of endogenous NSCs after SCI is critical for developing therapeutic drugs. METHODS: The infiltration, state, and location of CD8+ T cells in spinal cord after traumatic injury were analyzed by flow cytometry and immunofluorescence (IF) staining. The Basso Mouse Scale (BMS) scores and rotarod testing were used for motor behavioral analysis. NSCs were co-cultured with CD8+ T cells. EdU assay was used to detect proliferative cells. Western blotting was used to analyze the expression levels of STAT1, p-STAT1, and p27. ChIP-seq and ChIP-qRT-PCR analyses were used to detect the downstream of STAT1. Nestin-CreERT2::Ai9 transgenic mice were used to genetic lineage tracing of Nestin+ NSCs after SCI in vivo. RESULTS: A prolonged increase of activated CD8+ T cells occurs in the injured spinal cords. The behavioral analysis demonstrated that the administration of an anti-CD8 antibody promotes the recovery of locomotor function. Then, we discovered that CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1 pathway in vitro. ChIP-seq and ChIP-qRT-PCR analysis revealed that STAT1 could directly bind to the promoters of astrocyte marker genes GFAP and Aldh1l1. Genetic lineage tracing of Nestin+ NSCs demonstrated that most NSCs differentiated into astrocytes following SCI. Depleting CD8+ T cells reduced the differentiation of NSCs into astrocytes and instead promoted the differentiation of NSCs into oligodendrocytes. CONCLUSION: In conclusion, CD8+ T cells suppressed the proliferation of NSCs and promoted the differentiation of NSCs into astrocytes by the IFN-γ-STAT1-GFAP/Aldhl1l axis. Our study identifies INF-γ as a critical mediator of CD8+ T-cell-NSC cross talk and a potential node for therapeutic intervention in SCI.

19.
Poult Sci ; 102(4): 102539, 2023 Apr.
Article En | MEDLINE | ID: mdl-36805399

Avian neurotropic viruses are critical problems in poultry industry causing severe central nervous system (CNS) damage with neuroinvasive and neurovirulence properties. Biomarker of neurotropic viral intracranial invasion is of great application value for the diagnosis, but that of avian neurotropic viruses remains elusive. Previously, we found that chicken caspase recruitment domain family, member 11 (CARD11) was only upregulated in virulent Newcastle disease virus-infected chickens and in chicken primary neuronal cells. In this study, CARD11 was systemically expressed in chickens and pigeons detected by absolute qPCR and immunohistochemical (IHC) assay. After virus challenging, only avian neurotropic viruses (avian encephalomyelitis virus [AEV] and pigeon paramyxovirus type 1 [PPMV-1]) except Marek's disease virus (MDV) can invade brain and cause pathological changes. The relative mRNA expression of CARD11 was brain-upregulated in AEV- or PPMV-1-infected animals, rather than MDV and non-neurotropic viruses (fowl adenovirus serotype 4 [FAdV-4] and infectious bronchitis virus [IBV]). Similarly, the protein expression of CARD11 was only upregulated in the cerebra and cerebella infected by avian brain-neurotropic virus using IHC assay. And there were no correlations between the change level of CARD11 and viral load. Our preliminary data suggested that avian CARD11 may be a potential brain biomarker for avian brain-neurotropic virus invasion.


Herpesvirus 2, Gallid , Poultry Diseases , Virus Diseases , Animals , Chickens/genetics , Up-Regulation , Newcastle disease virus , Brain , Virus Diseases/veterinary , Biomarkers , Poultry Diseases/pathology
20.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-36751705

The purpose of this study was to explore whether conjugated linoleic acid (CLA) could alleviate fatty liver hemorrhagic syndrome (FLHS) induced by estradiol benzoate intramuscular injection in laying hens. One hundred male Hy-Line white chickens were randomly divided into two groups, namely, the control (CON) and estradiol benzoate (E) groups, and both groups were fed the same basal diet. After injections of estradiol benzoate at 2 mg/kg every two days for a total of 7 times, chickens in the E group showed FLHS symptoms, including liver enlargement, hemorrhage, and steatosis. Then half of the chickens in the E group received an additional diet containing 5000 mg/kg CLA for 8 weeks. The results of morphological observations, hematoxylin and eosin staining, and Oil Red O staining showed that CLA alleviated liver enlargement, hemorrhage, and lipid accumulation in FLHS chickens. In addition, we measured liver function and lipid metabolism indicators, including ALT, AST, TG, TCH, HDL-C, and LDL-C, which further suggested that CLA mitigated the disturbance of serum and liver metabolism in FLHS chickens. Mechanistically, CLA inhibited hepatic de novo lipogenesis, cholesterol synthesis, and TG accumulation and increased TG hydrolysis in FLHS chickens by regulating the gene expression of CD36, ACC, FAS, SCD 1, DGAT2, LIPE, ATGL, CPT1A, SREBP-1c, SREBP-2, PPARγ, and PPARα. Furthermore, CLA ameliorated hepatic oxidative stress and inhibited NF-κB signaling pathway-mediated inflammation in FLHS chickens. In conclusion, CLA regulated lipid metabolism, thus further alleviating oxidative stress and inflammation to alleviate FLHS induced by estrogen in chickens.


Fatty liver hemorrhagic syndrome (FLHS) has become one of the most common noninfectious diseases that contribute to laying hen mortality. Conjugated linoleic acid (CLA) is a functional polyunsaturated fatty acid with antioxidant and anti-inflammatory properties The purpose of this study was to investigate the effect of CLA on FLHS induced by estradiol benzoate in laying hens. We successfully replicated the FLHS pathological model by intramuscular injection of estradiol benzoate. The results of morphological and histopathological observations showed that CLA alleviated liver lipid accumulation in FLHS chickens. In addition, we measured liver function and lipid metabolism indicators, which further suggested that CLA mitigated the disturbance of serum and liver metabolism in FLHS chickens. Moreover, CLA inhibited hepatic de novo lipogenesis, cholesterol synthesis, and TG accumulation and increased TG hydrolysis in FLHS chickens by regulating related gene expression. Furthermore, CLA ameliorated hepatic oxidative stress and inhibited inflammation in FLHS chickens. In conclusion, CLA regulated lipid metabolism, thus further alleviating oxidative stress and inflammation to alleviate FLHS induced by estrogen in chickens. Our results provide new evidence and insights for applying CLA as an effective treatment for FLHS.


Fatty Liver , Linoleic Acids, Conjugated , Male , Animals , Female , Chickens/physiology , Linoleic Acids, Conjugated/metabolism , Fatty Liver/veterinary , Liver/metabolism , Hemorrhage/genetics , Hemorrhage/metabolism , Hemorrhage/veterinary , Inflammation/metabolism , Inflammation/veterinary
...