Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Int J Biol Macromol ; 261(Pt 2): 129934, 2024 Mar.
Article En | MEDLINE | ID: mdl-38311145

Hair follicle (HF) tissue engineering is promising for hair loss treatment especially for androgenetic alopecia. Physiologically, the initiation of HF morphogenesis relies on the interactions between hair germ mesenchymal and epithelial layers. To simulate this intricate process, in this study, a co-flowing microfluidic-assisted technology was developed to produce dual aqueous microdroplets capturing growth factors and double-layer cells for subsequent use in hair regeneration. Microspheres, called G/HAD, were generated using glycosaminoglycan-based photo-crosslinkable biological macromolecule (HAD) shells and gelatin methacrylate (GelMA) cores to enclose mesenchymal cells (MSCs) and mouse epidermal cells (EPCs). The findings indicated that the glycosaminoglycan-based HAD shells display thermodynamic incompatibility with GelMA cores, resulting in the aqueous phase separation of G/HAD cell spheres. These G/HAD microspheres exhibited favorable characteristics, including sustained growth factor release and wet adhesion properties. After transplantation into the dorsal skin of BALB/c nude mice, G/HAD cell microspheres efficiently induced the regeneration of HFs. This approach enables the mass production of approximately 250 dual-layer microspheres per minute. Thus, this dual-layer microsphere fabrication method holds great potential in improving current hair regeneration techniques and can also be combined with other tissue engineering techniques for various regenerative purposes.


Gelatin , Glycosaminoglycans , Mice , Animals , Gelatin/metabolism , Microspheres , Glycosaminoglycans/metabolism , Methacrylates , Mice, Nude , Biomimetics , Hair , Hair Follicle , Thermodynamics
2.
JCI Insight ; 8(24)2023 Dec 22.
Article En | MEDLINE | ID: mdl-37917167

Hair loss is a debilitating condition associated with the depletion of dermal papilla cells (DPCs), which can be replenished by dermal sheath cells (DSCs). Hence, strategies aimed at increasing the populations of DPCs and DSCs hold promise for the treatment of hair loss. In this study, we demonstrated in mice that introduced exogenous DPCs and DSCs (hair follicle mesenchymal stem cells) could effectively migrate and integrate into the dermal papilla and dermal sheath niches, leading to enhanced hair growth and prolonged anagen phases. However, the homing rates of DPCs and DSCs were influenced by various factors, including recipient mouse depilation, cell passage number, cell dose, and immune rejection. Through in vitro and in vivo experiments, we also discovered that the CXCL13/CXCR5 pathway mediated the homing of DPCs and DSCs into hair follicle niches. This study underscores the potential of cell-based therapies for hair loss by targeted delivery of DPCs and DSCs to their respective niches and sheds light on the intriguing concept that isolated mesenchymal stem cells can home back to their original niche microenvironment.


Hair Follicle , Mesenchymal Stem Cells , Mice , Animals , Hair Follicle/metabolism , Cells, Cultured , Alopecia/therapy , Alopecia/metabolism , Cell- and Tissue-Based Therapy
3.
Biofabrication ; 15(2)2023 02 02.
Article En | MEDLINE | ID: mdl-36608335

Tissue engineering of hair follicles (HFs) has enormous potential in the treatment of hair loss. HF morphogenesis is triggered by reciprocal interactions between HF germ epithelial and mesenchymal layers. Here, a microfluidic-assisted technology is developed for the preparation of double aqueous microdroplets that entrap double-layer cells and growth factors to ultimately be used for hair regeneration. Mouse mesenchymal cells (MSCs) and epidermal cells (EPCs) are encapsulated in gelatin methacrylate (GelMA) cores and photo-curable catechol-grafted hyaluronic acid (HAD) shells to fabricate GelMA-MSC/HAD-EPC (G/HAD) microspheres. The findings show that the G/HAD microspheres exhibit ultrafast gelation, aqueous phase separation, superior biocompatibility, and favorable wet adhesion properties. G/HAD microspheres can also support cell proliferation and sustain growth factor release. These composite cell microspheres are capable of efficient HF generation upon transplantation into the dorsal dermis of nude mice. This finding facilitates the large-scale preparation of approximately 80 double-layer cell spheres per min. This simple double-layer cell sphere preparation approach is a promising strategy for improving current hair-regenerative medicine techniques and can potentially be applied along with other organoid techniques for extended applications.


Biomimetics , Microfluidics , Mice , Animals , Microspheres , Mice, Nude , Hair , Regeneration
4.
Acta Biomater ; 165: 31-49, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-36347448

The restoration of hair-inductive potential in human dermal papilla cells (hDPCs) is a tremendous challenge for hair regeneration. Much of the research thus far has indicated that three-dimensional (3-D) culture shows improved efficacy in hair follicle (HF) neogenesis. However, mature HF cannot regenerate in an incomplete microenvironment. This study developed an optimized 3-D co-culture system to restore the hair-inductive characteristics of hDPCs by mimicking the in-vivo microenvironment. As a result, Matrigel-encapsulated hDPCs spontaneously formed into hDPC aggregates (hDPAs), which exhibited better activity, higher proliferation rates, and less apoptosis and hypoxia than the ultra-low attachment culture. Interestingly, the co-culture with the hair matrix cells and dermal sheath cup cells further enhanced the expression of hair regeneration-related genes of hDPAs compared to conditioned medium and improved mature HF induction. In addition, these hDPAs with higher hair inductivity could be produced on a large scale and easily separated for gene expression detection. Finally, the mRNA sequencing, PCR, and WB results showed that the co-culture biomimetic microenvironment stimulated the canonical Wnt signaling pathway and inhibited the BMP signaling pathway. Thus, this co-culture system will provide a reliable platform that allows high-throughput culture, testing, and harvesting of hDPAs for HF tissue engineering. STATEMENT OF SIGNIFICANCE: Extensive hair loss continues to be difficult to treat and causes significant patient morbidity. Hair follicle (HF) tissue engineering may seem to be a way out. However, the absence of the in-vivo microenvironment fails to regenerate mature hairs. This study systematically described a biomimetic co-culture approach to generate better quality human dermal papilla cell aggregates (hDPAs) with improved hair inductive properties, which can be further used for HF tissue engineering. The hDPC microenvironment was reprogrammed through the controllable formation of self-assembled organoids in Matrigel and the tri-culture with hair matrix cells and dermal sheath cup cells. This work indicates that the production of hDPAs could be readily scaled, in theory for large-scale assays, analyses, or therapeutic applications.


Dermis , Hair Follicle , Humans , Dermis/metabolism , Tissue Engineering , Hair , Wnt Signaling Pathway/genetics
5.
J Nanobiotechnology ; 20(1): 465, 2022 Nov 03.
Article En | MEDLINE | ID: mdl-36329527

BACKGROUND: Tissue engineering of hair follicles (HFs) has enormous potential for hair loss treatment. However, certain challenges remain, including weakening of the dermal papilla cell (DPC) viability, proliferation, and HF inducibility, as well as the associated inefficient and tedious preparation process required to generate extracellular matrix (ECM)-mimicking substrates for biomolecules or cells. Herein, we utilized gelatin methacryloyl (GelMA) and chitosan hydrogels to prepare scalable, monodispersed, and diameter-controllable interpenetrating network GelMA/chitosan-microcarriers (IGMs) loaded with platelet-rich plasma (PRP) and seeded with DPCs, on a high-throughput microfluidic chip. RESULTS: The ECM-mimicking hydrogels used for IGMs exhibited surface nano-topography and high porosity. Mass production of IGMs with distinct and precise diameters was achieved by adjusting the oil and aqueous phase flow rate ratio. Moreover, IGMs exhibited appropriate swelling and sustained growth factor release to facilitate a relatively long hair growth phase. DPCs seeded on PRP-loaded IGMs exhibited good viability (> 90%), adhesion, spreading, and proliferative properties (1.2-fold greater than control group). Importantly, PRP-loaded IGMs presented a higher hair inducibility of DPCs in vitro compared to the control and IGMs group (p < 0.05). Furthermore, DPC/PRP-laden IGMs were effectively mixed with epidermal cell (EPC)-laden GelMA to form a PRP-loaded DPC/EPC co-cultured hydrogel system (DECHS), which was subcutaneously injected into the hypodermis of nude mice. The PRP-loaded DECHS generated significantly more HFs (~ 35 per site) and novel vessels (~ 12 per site) than the other groups (p < 0.05 for each). CONCLUSION: Taken together, these results illustrate that, based on high-throughput microfluidics, we obtained scalable and controllable production of ECM-mimicking IGMs and DECHS, which simulate an effective micro- and macro-environment to promote DPC bioactivity and hair regeneration, thus representing a potential new strategy for HF tissue engineering.


Chitosan , Platelet-Rich Plasma , Animals , Mice , Cells, Cultured , Chitosan/metabolism , Hair Follicle , Hydrogels/chemistry , Mice, Nude , Platelet-Rich Plasma/metabolism , Tissue Engineering
7.
Front Cell Dev Biol ; 9: 724310, 2021.
Article En | MEDLINE | ID: mdl-34604224

Dermal papillae are a target of androgen action in patients with androgenic alopecia, where androgen acts on the epidermis of hair follicles in a paracrine manner. To mimic the complexity of the dermal papilla microenvironment, a better culture model of human dermal papilla cells (DPCs) is needed. Therefore, we evaluated the inhibitory effect of dihydrotestosterone (DHT)-treated two-dimensional (2D)- and 3D-cultured DPCs on hair follicle growth. 2D- and 3D-cultured DPC proliferation was inhibited after co-culturing with outer root sheath (ORS) cells under DHT treatment. Moreover, gene expression levels of ß-catenin and neural cell adhesion molecules were significantly decreased and those of cleaved caspase-3 significantly increased in 2D- and 3D-cultured DPCs with increasing DHT concentrations. ORS cell proliferation also significantly increased after co-culturing in the control-3D model compared with the control-2D model. Ki67 downregulation and cleaved caspase-3 upregulation in DHT-treated 2D and 3D groups significantly inhibited ORS cell proliferation. Sequencing showed an increase in the expression of genes related to extracellular matrix synthesis in the 3D model group. Additionally, the top 10 hub genes were identified, and the expression of nine chemokine-related genes in DHT-treated DPCs was found to be significantly increased. We also identified the interactions between transcription factor (TF) genes and microRNAs (miRNAs) with hub genes and the TF-miRNA coregulatory network. Overall, the findings indicate that 3D-cultured DPCs are more representative of in vivo conditions than 2D-cultured DPCs and contribute to our understanding of the molecular mechanisms underlying androgen-induced alopecia.

8.
Biomed Pharmacother ; 137: 111247, 2021 May.
Article En | MEDLINE | ID: mdl-33517191

Androgenic alopecia (AGA), also known as male pattern baldness, is one of the most common hair loss diseases worldwide. The main treatments of AGA include hair transplant surgery, oral medicines, and LDL laser irradiation, although no treatment to date can fully cure this disease. Animal models play important roles in the exploration of potential mechanisms of disease development and in assessing novel treatments. The present study describes androgen receptor (AR) in C57BL/6 mouse hair follicles that can be activated by dihydrotestosterone (DHT) and translocate to the nucleus. This led to the design of a mouse model of androgen-induced AGA in vivo and in vitro. DHT was found to induce early hair regression, hair miniaturization, hair density loss, and changes in hair morphology in male C57BL/6 mice. These effects of DHT could be partly reversed by the AR antagonist bicalutamide. DHT had similar effects in an ex vivo model of hair loss. Evaluation of histology, organ culture, and protein expression could explain the mechanism by which DHT delayed hair regrowth.


Alopecia/metabolism , Dihydrotestosterone , Hair Follicle/metabolism , Receptors, Androgen/metabolism , Alopecia/chemically induced , Alopecia/drug therapy , Alopecia/physiopathology , Androgen Antagonists/pharmacology , Anilides/pharmacology , Animals , Disease Models, Animal , Hair Follicle/drug effects , Hair Follicle/growth & development , Male , Mice , Mice, Inbred C57BL , Nitriles/pharmacology , Organ Culture Techniques , Signal Transduction , Tosyl Compounds/pharmacology
9.
Front Cell Dev Biol ; 8: 593638, 2020.
Article En | MEDLINE | ID: mdl-33425897

The application of dermal papilla cells to hair follicle (HF) regeneration has attracted a great deal of attention. However, cultured dermal papilla cells (DPCs) tend to lose their capacity to induce hair growth during passage, restricting their usefulness. Accumulating evidence indicates that DPCs regulate HF growth mainly through their unique paracrine properties, raising the possibility of therapies based on extracellular vesicles (EVs). In this study, we explored the effects of EVs from high- and low-passage human scalp follicle dermal papilla cells (DP-EVs) on activation of hair growth, and investigated the underlying mechanism. DP-EVs were isolated by ultracentrifugation and cultured with human scalp follicles, hair matrix cells (MxCs), and outer root sheath cells (ORSCs), and we found low-passage DP-EVs accelerated HF elongation and cell proliferation activation. High-throughput miRNA sequencing and bioinformatics analysis identified 100 miRNAs that were differentially expressed between low- (P3) and high- (P8) passage DP-EVs. GO and KEGG pathway analysis of 1803 overlapping target genes revealed significant enrichment in the BMP/TGF-ß signaling pathways. BMP2 was identified as a hub of the overlapping genes. miR-140-5p, which was highly enriched in low-passage DP-EVs, was identified as a potential regulator of BMP2. Direct repression of BMP2 by miR-140-5p was confirmed by dual-luciferase reporter assay. Moreover, overexpression and inhibition of miR-140-5p in DP-EVs suppressed and increased expression of BMP signaling components, respectively, indicating that this miRNA plays a critical role in hair growth and cell proliferation. DP-EVs transport miR-140-5p from DPCs to epithelial cells, where it downregulates BMP2. Therefore, DPC-derived vesicular miR-140-5p represents a therapeutic target for alopecia.

...