Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Cancer ; 15(16): 5244-5257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247590

RESUMEN

ENG/CD105 encodes a vascular endothelial glycoprotein and plays a crucial role in modulating angiogenesis. However, the significance of ENG expression, DNA methylation, immuno-response, and cordycepin (CD) regulation as diagnostic, prognostic, and therapeutic markers for breast invasive carcinoma (BRCA) remains unclear. As a result, ENG is decreased in BRCA tissues compared with corresponding healthy tissues. Five isoforms were found, and the utilization for ENG isoform (ENG-002) was the highest, suggesting its potential involvement in important roles in BRCA. ENG DNA was frequently altered in most types of cancer, and overall survival (OS) for mutant ENG was significantly longer than for wild-type cases. High expressions of ENG remarkably correlate with long relapse-free survival (RFS) for breast cancer (BC). Additionally, the ENG methylation level was higher in BRCA tissues compared with matched healthy tissues. The ENG expression and DNA methylation showed a significantly reverse correlation, demonstrating that ENG methylation may be a regulatory mechanism. By constructing diagnostic and prognostic models of ENG methylation for BRCA, we found four CpGs (CpG sites) that ranked with high importance. High methylation for cg14185922 of ENG in BRCA tissues showed shorter OS (high risk), indicating that ENG CpGs' methylation has potential as a diagnostic and prognostic biomarker for BRCA. Moreover, ENG might be a novel target for tumor immune response and immunotherapy in pancancer, including BC. CD, an adenosine analog and anti-cancer agent, increased ENG levels in a dose-dependent manner in animal models. This suggests that CD repressed BC growth and metastasis, at least partially through increasing the expression of the tumor suppressor gene ENG. Thus, our study successfully evaluated ENG/CD105 expression, DNA methylation, immune response, and CD regulation, which act as a novel diagnostic, prognostic, and therapeutic biomarker for BRCA. This research also fills critical knowledge gaps in this ENG/cancer field and highlights ENG's potential importance for the diagnosis, prognosis, and treatment of BRCA.

2.
Front Immunol ; 15: 1434027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211038

RESUMEN

A disintegrin and metalloproteinase domain 10 (ADAM10), a member of the ADAM family, is a cellular surface protein with potential adhesion and protease/convertase functions. The expression regulations in cancers by natural products [adenosine (AD) and its analogs, cordycepin (CD), and N6, N6-dimethyladenosine (m6 2A)], and immune regulation are unclear. As results, AD, CD, and m6 2A inhibited ADAM10 expression in various cancer cell lines, indicating their roles in anti-cancer agents. Further molecular docking with ADAM10 protein found the binding energies of all docking groups were <-7 kcal/mol for all small-molecules (AD, CD and m6 2A), suggesting very good binding activities. In addition, analysis of the immunomodulatory roles in cancer showed that ADAM10 was negatively correlated with immunomodulatory genes such as CCL27, CCL14, CCL25, CXCR5, HLA-B, HLA-DOB1, LAG3, TNFRSF18, and TNFRSF4 in bladder urothelial carcinoma, thymoma, breast invasive carcinoma, TGCT, kidney renal papillary cell carcinoma, SKCM and thyroid carcinoma, indicating the immune-promoting roles for ADAM10. LAG3 mRNA levels were reduced by both AD and CD in vivo. ADAM10 is also negatively associated with tumor immunosuppression and interrelated with the immune infiltration of tumors. Overall, the present study determined ADAM10 expression by AD, CD and m6 2A, and in AD or CD/ADAM10/LAG3 signaling in cancers, and suggested a potential method for immunotherapy of cancers by targeting ADAM10 using the small molecules AD, CD and m6 2A.


Asunto(s)
Proteína ADAM10 , Adenosina , Desoxiadenosinas , Neoplasias , Humanos , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Desoxiadenosinas/farmacología , Ratones , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Inmunomodulación/efectos de los fármacos , Femenino
3.
Cancer Cell Int ; 24(1): 279, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118110

RESUMEN

The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.

4.
J Cancer ; 15(13): 4374-4385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947392

RESUMEN

Breast cancer (BC) is the most common tumor in women worldwide. TRIM28 (RNF96) plays pleiotropic biological functions, such as silencing target genes, facilitating DNA repair, stimulating cellular proliferation and differentiation, and contributing to cancer progression. TRIM28 plays an increasingly crucial role in cancer, but its impact on BC, including breast invasive carcinoma, remains poorly understood. In the current study, analyses of online databases, quantitative real-time quantitative PCR, immunohistochemistry, and western blotting were performed on patients with breast invasive carcinoma (BRCA). Cordycepin (CD) was used to monitor BC progression and TRIM28 expression in vivo. As a result, we observed that TRIM28 is highly expressed in breast invasive carcinoma tissues compared with the corresponding normal tissues and is correlated with metastatic / invasive progression. High expression of TRIM28 might serve as a prognostic marker for long-term survival in triple-negative BC, advanced BC, or breast invasive carcinoma. Although TRIM28 methylation in tumor tissues of breast invasive carcinoma is not significantly changed compared to the matched normal tissues, the expressions and methylation of TRIM28 are significantly reversely correlated. TRIM28 expression was inhibited by CD in the mouse model, indicating its role in preventing BC progression. Thus, TRIM28 might be a potentially valuable molecular target for forecasting the progression / prognosis of patients with breast invasive carcinoma. CD, which represses BC growth/metastasis, may be involved partially through suppressing TRIM28 expression.

5.
Drug Discov Today ; 29(7): 104026, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762086

RESUMEN

SARS-CoV-2 has triggered an international outbreak of the highly contagious acute respiratory disease known as COVID-19. Identifying key targets in the virus infection lifecycle is crucial for developing effective prevention and therapeutic strategies against it. Furin is a serine endoprotease that belongs to the family of proprotein convertases and plays a critical role in the entry of host cells by SARS-CoV-2. Furin can cleave a specific S1/S2 site, PRRAR, on the spike protein of SARS-CoV-2, which promotes viral transmission by facilitating membrane fusion. Hence, targeting furin could hold clinical implications for the prevention and treatment of COVID-19. This review offers an overview of furin's structure, substrates, function, and inhibitors, with a focus on its potential role in SARS-CoV-2 infection.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Furina , SARS-CoV-2 , Furina/metabolismo , Humanos , COVID-19/prevención & control , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Int J Biol Macromol ; 270(Pt 1): 132239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735606

RESUMEN

Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-ß) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-ß pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Subunidades beta de Inhibinas , Mapas de Interacción de Proteínas , Transducción de Señal , Factor de Crecimiento Transformador beta , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Biología Computacional/métodos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Mapas de Interacción de Proteínas/genética , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Mutación , Biomarcadores de Tumor/genética
7.
Int J Biol Macromol ; 268(Pt 2): 131811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677694

RESUMEN

It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.


Asunto(s)
ARN Helicasas DEAD-box , G-Cuádruplex , Infertilidad Masculina , Espermatogénesis , Masculino , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/química , Infertilidad Masculina/genética , Espermatogénesis/genética , Animales , ARN/genética , ARN/metabolismo
8.
Genes (Basel) ; 15(3)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540362

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT), also called Rendu-Osler syndrome, is a group of rare genetic diseases characterized by autosomal dominance, multisystemic vascular dysplasia, and age-related penetrance. This includes arteriovenous malformations (AVMs) in the skin, brain, lung, liver, and mucous membranes. The correlations between the phenotype and genotype for HHT are not clear. An HHT Chinese pedigree was recruited. Whole exome sequencing (WES) analysis, Sanger verification, and co-segregation were conducted. Western blotting was performed for monitoring ENG/VEGFα signaling. As a result, a nonsense, heterozygous variant for ENG/CD105: c.G1169A:p. Trp390Ter of the proband with hereditary hemorrhagic telangiectasia type 1 (HHT1) was identified, which co-segregated with the disease in the M666 pedigree. Western blotting found that, compared with the normal levels associated with non-carrier family members, the ENG protein levels in the proband showed approximately a one-half decrease (47.4% decrease), while levels of the VEGFα protein, in the proband, showed approximately a one-quarter decrease (25.6% decrease), implying that ENG haploinsufficiency, displayed in the carrier of this variant, may affect VEGFα expression downregulation. Pearson and Spearman correlation analyses further supported TGFß/ENG/VEGFα signaling, implying ENG regulation in the blood vessels. Thus, next-generation sequencing including WES should provide an accurate strategy for gene diagnosis, therapy, genetic counseling, and clinical management for rare genetic diseases including that in HHT1 patients.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditaria/genética , Genotipo , Heterocigoto , China
9.
Exp Ther Med ; 27(2): 52, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234609

RESUMEN

Neuropilin 1 (NRP1/CD304) is a typical membrane-bound co-receptor for vascular endothelial growth factor, semaphorin family members and viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, NRP1 expression levels across cancer types and the potential role of SARS-CoV-2 infection in patients with cancer are not clear. Online databases, such as The Cancer Genome Atlas database of Human Protein Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal were used for the expression analysis in this study. Immunohistochemical (IHC) staining for NRP1 was performed in the tissues of patients with non-small cell carcinoma. As a result, it was found that NRP1 mRNA and protein expression levels were highest in the female reproductive tissues and the respiratory system, specifically in the nasopharynx, bronchus and fallopian tube, as well as in adipocytes, hepatic stellate cells, Sertoli cells, endothelial cells and dendritic cells. IHC showed that the NRP1 protein was mainly localized to the cytoplasm and membrane in the tissues of patients with non-small cell carcinoma, demonstrating its role in lung infection by SARS-CoV-2, due to invasion of cell membranes by the virus. Levels of NRP1 mRNA were significantly increased in lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma, stomach adenocarcinoma and thymoma, and significantly decreased in cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney chromophobe, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uterine carcinosarcoma, compared with corresponding healthy tissues in pancancer, indicating roles for viral invasion in most cancer types. Moreover, low NRP1 expression was significantly associated with long overall survival (OS) time in adrenocortical carcinoma, brain lower grade glioma, stomach adenocarcinoma and uveal melanoma, but with short OS time in KIRC only. The ENST00000374867.6 (NRP1-202) isoform is most highly expressed in most cancer types and thus could be involved in tumorigenesis and SARS-CoV-2 invasion in cancer patients. NRP1 may be involved in SARS-CoV-2 invasion in patients with cancer, including those with lung cancer.

10.
Int J Legal Med ; 138(2): 329-350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37770641

RESUMEN

At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Masculino , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Circular , ARN de Interacción con Piwi , ARN no Traducido , Medicina Legal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA