Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 193(2): 1675-1694, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37379562

RESUMEN

CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure. Here, we show that the expression of CO responds to salinity treatment. CO negatively mediated salinity tolerance under long-day (LD) conditions. Seedlings from co-mutants were more tolerant to salinity stress, whereas overexpression of CO resulted in plants with reduced tolerance to salinity stress. Further genetic analyses revealed the negative involvement of GIGANTEA (GI) in salinity tolerance requires a functional CO. Mechanistic analysis demonstrated that CO physically interacts with 4 critical basic leucine zipper (bZIP) transcription factors; ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), ABF2, ABF3, and ABF4. Disrupting these ABFs made plants hypersensitive to salinity stress, demonstrating that ABFs enhance salinity tolerance. Moreover, ABF mutations largely rescued the salinity-tolerant phenotype of co-mutants. CO suppresses the expression of several salinity-responsive genes and influences the transcriptional regulation function of ABF3. Collectively, our results show that the LD-induced CO works antagonistically with ABFs to modulate salinity responses, thus revealing how CO negatively regulates plant adaptation to salinity stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Arabidopsis/metabolismo , Plantones/genética , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Unión al ADN/metabolismo
2.
Plant Cell ; 35(6): 2132-2156, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36856677

RESUMEN

Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
PeerJ ; 10: e12938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186503

RESUMEN

BACKGROUND: Bark storage protein (BSP) plays an important role in seasonal nitrogen cycling in perennial deciduous trees. However, there is no report on the function of BSP in the perennial woody oil plant Jatropha curcas. METHODS: In this study, we identified six members of JcBSP gene family in J. curcas genome. The patterns, seasonal changes, and responses to nitrogen treatment in gene expression of JcBSPs were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Overexpression of JcBSP1 in transgenic Arabidopsis thaliana was driven by a constitutive cauliflower mosaic virus (CaMV) 35S RNA promoter. RESULTS: JcBSP members were found to be expressed in various tissues, except seeds. The seasonal changes in the total protein concentration and JcBSP1 expression in the stems of J. curcas were positively correlated, as both increased in autumn and winter and decreased in spring and summer. In addition, the JcBSP1 expression in J. curcas seedlings treated with different concentrations of an NH4NO3 solution was positively correlated with the NH4NO3 concentration and application duration. Furthermore, JcBSP1 overexpression in Arabidopsis resulted in a phenotype of enlarged rosette leaves, flowers, and seeds, and significantly increased the seed weight and yield in transgenic plants.


Asunto(s)
Arabidopsis , Jatropha , Arabidopsis/genética , Jatropha/genética , Corteza de la Planta/metabolismo , Flores/genética , Proteínas de Plantas/genética
4.
Plants (Basel) ; 10(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916393

RESUMEN

Diacylglycerol acyltransferase (DGAT) is the only enzyme that catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol (DAG) to form triacylglycerol (TAG). The two main types of DGAT enzymes in the woody perennial biofuel plant Jatropha curcas, JcDGAT1 and JcDGAT2, were previously characterized only in heterologous systems. In this study, we investigated the functions of JcDGAT1 and JcDGAT2 in J. curcas.JcDGAT1 and JcDGAT2 were found to be predominantly expressed during the late stages of J. curcas seed development, in which large amounts of oil accumulated. As expected, overexpression of JcDGAT1 or JcDGAT2 under the control of the CaMV35S promoter gave rise to an increase in seed kernel oil production, reaching a content of 53.7% and 55.7% of the seed kernel dry weight, respectively, which were respectively 25% and 29.6% higher than that of control plants. The increase in seed oil content was accompanied by decreases in the contents of protein and soluble sugars in the seeds. Simultaneously, there was a two- to four-fold higher leaf TAG content in transgenic plants than in control plants. Moreover, by analysis of the fatty acid (FA) profiles, we found that JcDGAT1 and JcDGAT2 had the same substrate specificity with preferences for C18:2 in seed TAGs, and C16:0, C18:0, and C18:1 in leaf TAGs. Therefore, our study confirms the important role of JcDGAT1 and JcDGAT2 in regulating oil production in J. curcas.

5.
Gigascience ; 9(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32048715

RESUMEN

BACKGROUND: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported. RESULTS: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.5 Mb and a scaffold N50 of 30.7 Mb using Pacific Biosciences long reads combined with genome-wide chromosome conformation capture (Hi-C) technology. Based on this high-quality reference genome, we detected chromatin architecture differences between monoecious and gynoecious inflorescence buds of Jatropha. Differentially expressed genes were significantly enriched in the changed A/B compartments and topologically associated domain regions and occurred preferentially in differential contact regions between monoecious and gynoecious inflorescence buds. Twelve differentially expressed genes related to flower development or hormone synthesis displayed significantly different genomic interaction patterns in monoecious and gynoecious inflorescence buds. These results demonstrate that chromatin organization participates in the regulation of gene transcription during the process of sex differentiation in Jatropha. CONCLUSIONS: We have revealed the features of chromatin architecture in perennial woody plants and investigated the possible function of chromatin organization in Jatropha sex differentiation. These findings will facilitate understanding of the regulatory mechanisms of sex determination in higher plants.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Jatropha/genética , Cromatina/química , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Jatropha/crecimiento & desarrollo
6.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963715

RESUMEN

Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences were elevated, and flower development was modified without any alterations in vegetative growth. In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased, and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were infertile, which might have resulted from the continuously high expression of the transgene during flower development. However, the number and position of floral organs in the transgenic flowers were well defined, which suggested that the determinacy of the floral meristem was not affected. These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and the female-to-male ratio in J. curcas.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Jatropha/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Citocininas/genética , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Jatropha/fisiología , Plantas Modificadas Genéticamente/fisiología , Regiones Promotoras Genéticas , Reproducción Asexuada
7.
BMC Plant Biol ; 19(1): 468, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684864

RESUMEN

BACKGROUND: In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L., a perennial woody plant belonging to Euphorbiaceae. RESULTS: Two inflorescence branching mutants were identified in germplasm collection of Jatropha. The duo xiao hua (dxh) mutant has a seven-order branch inflorescence, and the gynoecy (g) mutant has a three-order branch inflorescence, while WT Jatropha has predominantly four-order branch inflorescence, occasionally the three- or five-order branch inflorescences in fields. Using weighted gene correlation network analysis (WGCNA), we identified several hub genes involved in the cytokinin metabolic pathway from modules highly associated with inflorescence phenotypes. Among them, Jatropha ADENOSINE KINASE 2 (JcADK2), ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (JcAPT1), CYTOKININ OXIDASE 3 (JcCKX3), ISOPENTENYLTRANSFERASE 5 (JcIPT5), LONELY GUY 3 (JcLOG3) and JcLOG5 may participate in cytokinin metabolic pathway in Jatropha. Consistently, exogenous application of cytokinin (6-benzyladenine, 6-BA) on inflorescence buds induced high-branch inflorescence phenotype in both low-branch inflorescence mutant (g) and WT plants. These results suggested that cytokinin is an important regulator in controlling inflorescence branching in Jatropha. In addition, comparative transcriptome analysis showed that Arabidopsis homologous genes Jatropha AGAMOUS-LIKE 6 (JcAGL6), JcAGL24, FRUITFUL (JcFUL), LEAFY (JcLFY), SEPALLATAs (JcSEPs), TERMINAL FLOWER 1 (JcTFL1), and WUSCHEL-RELATED HOMEOBOX 3 (JcWOX3), were differentially expressed in inflorescence buds between dxh and g mutants and WT plants, indicating that they may participate in inflorescence development in Jatropha. The expression of JcTFL1 was downregulated, while the expression of JcLFY and JcAP1 were upregulated in inflorescences in low-branch g mutant. CONCLUSIONS: Cytokinin is an important regulator in controlling inflorescence branching in Jatropha. The regulation of inflorescence architecture by the genes involved in floral development, including TFL1, LFY and AP1, may be conservative in Jatropha and Arabidopsis. Our results provide helpful information for elucidating the regulatory mechanism of inflorescence architecture in Jatropha.


Asunto(s)
Citocininas/metabolismo , Redes Reguladoras de Genes , Genes de Plantas , Inflorescencia/crecimiento & desarrollo , Jatropha/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Inflorescencia/genética , Jatropha/crecimiento & desarrollo , Mutación , Proteínas de Plantas/genética
8.
BMC Genomics ; 19(1): 380, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29788925

RESUMEN

BACKGROUND: Sacha Inchi (Plukenetia volubilis L.), which belongs to the Euphorbiaceae, has been considered a new potential oil crop because of its high content of polyunsaturated fatty acids in its seed oil. The seed oil especially contains high amounts of α-linolenic acid (ALA), which is useful for the prevention of various diseases. However, little is known about the genetic information and genome sequence of Sacha Inchi, which has largely hindered functional genomics and molecular breeding studies. RESULTS: In this study, a de novo transcriptome assembly based on transcripts sequenced in eight major organs, including roots, stems, shoot apexes, mature leaves, male flowers, female flowers, fruits, and seeds of Sacha Inchi was performed, resulting in a set of 124,750 non-redundant putative transcripts having an average length of 851 bp and an N50 value of 1909 bp. Organ-specific unigenes analysis revealed that the most organ-specific transcripts are found in female flowers (2244 unigenes), whereas a relatively small amount of unigenes are detected to be expressed specifically in other organs with the least in stems (24 unigenes). A total of 42,987 simple sequence repeats (SSRs) were detected, which will contribute to the marker assisted selection breeding of Sacha Inchi. We analyzed expression of genes related to the α-linolenic acid metabolism based on the de novo assembly and annotation transcriptome in Sacha Inchi. It appears that Sacha Inchi accumulates high level of ALA in seeds by strong expression of biosynthesis-related genes and weak expression of degradation-related genes. In particular, the up-regulation of FAD3 and FAD7 is consistent with high level of ALA in seeds of Sacha Inchi compared with in other organs. Meanwhile, several transcription factors (ABI3, LEC1 and FUS3) may regulate key genes involved in oil accumulation in seeds of Sacha Inchi. CONCLUSIONS: The transcriptome of major organs of Sacha Inchi has been sequenced and de novo assembled, which will expand the genetic information for functional genomic studies of Sacha Inchi. In addition, the identification of candidate genes involved in ALA metabolism will provide useful resources for the genetic improvement of Sacha Inchi and the metabolic engineering of ALA biosynthesis in other plants.


Asunto(s)
Euphorbiaceae/genética , Euphorbiaceae/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Ácido alfa-Linolénico/metabolismo , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular
9.
PeerJ ; 6: e4812, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29785355

RESUMEN

The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha. Cytokinin levels are directly regulated by isopentenyl transferase (IPT), cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CKX). In this study, we cloned six IPT genes, one JcCYP735A gene, and seven JcCKX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JcIPT1 was primarily expressed in roots and seeds, JcIPT2 was expressed in roots, apical meristems, and mature leaves, JcIPT3 was expressed in stems and mature leaves, JcIPT5 was expressed in roots and mature leaves, JcIPT6 was expressed in seeds at 10 days after pollination, and JcIPT9 was expressed in mature leaves. JcCYP735A was mainly expressed in roots, flower buds, and seeds. The seven JcCKX genes also showed different expression patterns in different organs of Jatropha. In addition, CK levels were detected in flower buds and seeds at different stages of development. The concentration of N6-(Δ2-isopentenyl)-adenine (iP), iP-riboside, and trans-zeatin (tZ) increased with flower development, and the concentration of iP decreased with seed development, while that of tZ increased. We further analyzed the function of JcCYP735A using the CRISPR-Cas9 system, and found that the concentrations of tZ and tZ-riboside decreased significantly in the Jccyp735a mutants, which showed severely retarded growth. These findings will be helpful for further studies of the functions of cytokinin metabolic genes and understanding the roles of cytokinins in Jatropha growth and development.

10.
Mitochondrial DNA B Resour ; 3(1): 328-329, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33521257

RESUMEN

Sacha Inchi (Plukenetia volubilis) is a potential woody oil seed plant for producing healthy vegetable oil due to high content of α-linolenic acid in its seeds. In this study, we report the structure of the complete chloroplast genome of P. volubilis using high-throughput next-generation sequencing technology. The circular chloroplast genome is 161,733 bp in size, containing a pair of inverted repeat regions (IR) of 27,382 bp each, which were separated by a large single copy region (LSC) of 88,843 bp and a small single copy region (SSC) of 18,126 bp. The chloroplast genome harbors 135 genes, including 92 protein-coding genes, 35 tRNA genes and 8 rRNA genes. Based on the phylogenetic relationships between the chloroplast genome of P. volubilis and those of the other species, P. volubilis is most closely related to castor bean (Ricinus communis).

11.
J Plant Physiol ; 221: 107-118, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29275214

RESUMEN

Plukenetia volubilis is a promising oilseed crop due to its seeds being rich in unsaturated fatty acids, especially alpha-linolenic acid. P. volubilis is monoecious, with separate male and female flowers on the same inflorescence. We previously reported that male flowers were converted to female flowers by exogenous cytokinin (6-benzyladenine, 6-BA) treatment in P. volubilis. To identify candidate genes associated with floral sex differentiation of P. volubilis, we performed de novo transcriptome assembly and comparative analysis on control male inflorescence buds (MIB) and female inflorescence buds (FIB) induced by 6-BA using Illumina sequencing technology. A total of 57,664 unigenes with an average length of 979 bp were assembled from 104.1 million clean reads, and 45,235 (78.45%) unigenes were successfully annotated in the public databases. Notably, Gene Ontology analyses revealed that 4193 and 3880 unigenes were enriched in the categories of reproduction and reproductive processes, respectively. Differential expression analysis identified 1385 differentially expressed unigenes between MIB and FIB, of which six unigenes related to cytokinin and auxin signaling pathways and 16 important transcription factor (TF) genes including MADS-box family members were identified. In particular, several unigenes encoding important TFs, such as homologs of CRABS CLAW, RADIALIS-like 1, RADIALIS-like 2, HECATE 2, WUSCHEL-related homeobox 9, and SUPERMAN, were expressed at higher levels in FIB than in MIB. The expression patterns of the 36 selected unigenes revealed by transcriptome analysis were successfully validated by quantitative real-time PCR. This study not only provides comprehensive gene expression profiles of P. volubilis inflorescence buds, but also lays the foundation for research on the molecular mechanism of floral sex determination in P. volubilis and other monoecious plants.


Asunto(s)
Compuestos de Bencilo/farmacología , Citocininas/farmacología , Euphorbiaceae/genética , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Purinas/farmacología , Transcriptoma , Euphorbiaceae/crecimiento & desarrollo , Euphorbiaceae/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inflorescencia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Sci Rep ; 7: 43090, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28225036

RESUMEN

Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Jatropha/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Flores/genética , Prueba de Complementación Genética , Inflorescencia , Jatropha/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
13.
Sci Rep ; 6: 37306, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869146

RESUMEN

Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.


Asunto(s)
Flores/crecimiento & desarrollo , Jatropha/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Clonación Molecular , Flores/genética , Flores/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mejoramiento Genético , Jatropha/genética , Jatropha/metabolismo , Especificidad de Órganos , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
14.
Front Plant Sci ; 7: 1953, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144243

RESUMEN

Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.

15.
Plant Biotechnol Rep ; 9(6): 405-416, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640597

RESUMEN

Jatropha curcas is considered a potential biodiesel feedstock crop. Currently, the value of J. curcas is limited because its seed yield is generally low. Transgenic modification is a promising approach to improve the seed yield of J. curcas. Although Agrobacterium-mediated genetic transformation of J. curcas has been pursued for several years, the transformation efficiency remains unsatisfying. Therefore, a highly efficient and simple Agrobacterium-mediated genetic transformation method for J. curcas should be developed. We examined and optimized several key factors that affect genetic transformation of J. curcas in this study. The results showed that the EHA105 strain was superior to the other three Agrobacterium tumefaciens strains for infecting J. curcas cotyledons, and the supplementation of 100 mM acetosyringone slightly increased the transient transformation frequency. Use of the appropriate inoculation method, optimal kanamycin concentration and appropriate duration of delayed selection also improved the efficiency of stable genetic transformation of J. curcas. The percentage of ß-glucuronidase positive J. curcas shoots reached as high as 56.0 %, and 1.70 transformants per explant were obtained with this protocol. Furthermore, we optimized the root-inducing medium to achieve a rooting rate of 84.9 %. Stable integration of the T-DNA into the genomes of putative transgenic lines was confirmed by PCR and Southern blot analysis. Using this improved protocol, a large number of transgenic J. curcas plantlets can be routinely obtained within approximately 4 months. The detailed information provided here for each step of J. curcas transformation should enable successful implementation of this transgenic technology in other laboratories.

16.
Int J Mol Sci ; 16(6): 12513-30, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26047338

RESUMEN

Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.


Asunto(s)
Productos Agrícolas/genética , Euphorbiaceae/crecimiento & desarrollo , Euphorbiaceae/genética , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Algoritmos , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Euphorbiaceae/química , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos , Aceites de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Semillas/genética
17.
BMC Plant Biol ; 14: 125, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24886195

RESUMEN

BACKGROUND: Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. RESULTS: To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. CONCLUSIONS: JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.


Asunto(s)
Biocombustibles , Genes de Plantas , Jatropha/genética , Proteínas de Plantas/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Arabidopsis/genética , Clonación Molecular , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Floema/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
18.
Int J Mol Sci ; 14(12): 24338-54, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24351820

RESUMEN

Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR) analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBasePLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.


Asunto(s)
Biocombustibles , Genes de Plantas , Jatropha/genética , Frío , Sequías , Regulación de la Expresión Génica de las Plantas , Jatropha/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Plant Sci ; 181(6): 632-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21958704

RESUMEN

Plant small heat shock proteins (sHSPs) are known to be important for environmental stress tolerance and involved in various developmental processes. In this study, two full-length cDNAs encoding sHSPs, designated JcHSP-1 and JcHSP-2, were identified and characterized from developing seeds of a promising biodiesel feedstock plant Jatropha curcas by expressed sequence tag (EST) sequencing of embryo cDNA libraries and rapid amplification of cDNA ends (RACE). JcHSP-1 and JcHSP-2 contained open-reading frames encoding sHSPs of 219 and 157 amino acids, with predicted molecular weights of 24.42kDa and 18.02kDa, respectively. Sequence alignment indicated that both JcHSP-1 and JcHSP-2 shared high similarity with other plant sHSPs. Real-time quantitative RT-PCR analysis showed that the transcriptional level of both JcHSP-1 and JcHSP-2 increased along with natural dehydration process during seed development. A sharp increase of JcHSP-2 transcripts occurred in response to water content dropping from 42% in mature seeds to 12% in dry seeds. Western blot analysis revealed that the accumulation profile of two cross-reacting proteins, whose molecular weight corresponding to the calculated size of JcHSP-1 and JcHSP-2, respectively, was well consistent with the mRNA expression pattern of JcHSP-1 and JcHSP-2 in jatropha seeds during maturation and natural dehydration. These results indicated that both JcHSPs might play an important role in cell protection and seed development during maturation of J. curcas seeds.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/genética , Jatropha/genética , Proteínas de Plantas/genética , Semillas/química , Secuencia de Aminoácidos , Biocombustibles , Western Blotting , ADN Complementario/aislamiento & purificación , Deshidratación/metabolismo , Etiquetas de Secuencia Expresada , Proteínas de Choque Térmico Pequeñas/metabolismo , Jatropha/química , Jatropha/metabolismo , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Análisis de Secuencia de ADN
20.
Planta ; 233(6): 1237-52, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21336597

RESUMEN

Limited information is available regarding the exact function of specific WRKY transcription factors in plant responses to heat stress. We analyzed the roles of WRKY25, WRKY26, and WRKY33, three types of group I WRKY proteins, in the regulation of resistance to heat stress. Expression of WRKY25 and WRKY26 was induced upon treatment with high temperature, whereas WRKY33 expression was repressed. Heat-treated WRKY single mutants exhibited small responses, while wrky25wrky26 and wrky25wrky33 double mutants and the wrky25wrky26wrky33 triple mutants showed substantially increased susceptibility to heat stress, showing reduced germination, decreased survival, and elevated electrolyte leakage, compared with wild-type plants. In contrast, constitutive expression of WRKY25, WRKY26, or WRKY33 enhanced resistance to heat stress. Expression studies of selected heat-defense genes in single, double, and triple mutants, as well as in over-expressing lines, were correlated with their thermotolerance phenotypes and demonstrated that the three WRKY transcription factors modulate transcriptional changes of heat-inducible genes in response to heat treatment. In addition, our findings provided evidence that WRKY25, WRKY26, and WRKY33 were involved in regulation of the heat-induced ethylene-dependent response and demonstrated positive cross-regulation within these three genes. Together, these results indicate that WRKY25, WRKY26, and WRKY33 positively regulate the cooperation between the ethylene-activated and heat shock proteins-related signaling pathways that mediate responses to heat stress; and that these three proteins interact functionally and play overlapping and synergetic roles in plant thermotolerance.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico/fisiología , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Secuencia de Bases , Etilenos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Variación Genética/fisiología , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...