Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 245: 117971, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145740

RESUMEN

In this study, activated carbon (WS-AC) was prepared from walnut shell. Nano-zero-valent iron (nZVI) was loaded on walnut shell activated carbon by liquid phase reduction method and used as catalyst (WS-AC/nZVI) to activate peroxymonosulfate (PMS) to efficiently degrade tetracycline (TC) in solution. The composite material with a mass ratio of WS-AC to nZVI of 1:1 has the highest catalytic performance for activating PMS to degrade TC. The results showed that under the conditions of TC concentration of 100 ppm, PMS dosage of 0.2 mM and WS-AC/nZVI dosage of 0.1 g/L, the removal efficiency of TC could reach 81%. Based on quenching experiments and electron spin resonance (EPR), it was verified that •OH, SO4•- and 1O2 bound on the catalyst surface were the main reactive oxygen species during the reaction. The intermediate products of TC were identified by liquid chromatography-mass spectrometry (HPLC-MS) and DFT calculation, and the possible degradation pathway of TC was proposed. The catalyst still maintained high removal efficiency of TC after four cycles of experiments, and the minimal iron loss on the surface of the catalyst indicated that it had good stability. The efficient and stable WS-AC/nZVI activated PMS showed great potential in the degradation of antibiotics.


Asunto(s)
Juglans , Peróxidos , Contaminantes Químicos del Agua , Carbón Orgánico , Hierro/química , Contaminantes Químicos del Agua/química , Antibacterianos , Tetraciclina/química
2.
Bioresour Technol ; 368: 128337, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403915

RESUMEN

This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.


Asunto(s)
Cipriniformes , Contaminantes Ambientales , Gases de Efecto Invernadero , Animales , Humedales , Nitrógeno , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA