Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Sci Rep ; 12(1): 14044, 2022 Aug 18.
Article En | MEDLINE | ID: mdl-35982212

Nanostructures exhibiting optical resonances (so-called nanoantennas) have strong potential for applications in color printing and filtering with sub-wavelength resolution. While small scale demonstrations of these systems are interesting as a proof-of-concept, their large scale and volume fabrication requires deeper analysis and further development for industrial adoption. Here, we evaluate the color quality produced by large size nanoantenna arrays fabricated on a 12-in. wafer using deep UV immersion photolithography and dry etching processes. The color reproduction and quality are analyzed in context of the CIE color diagram, showing that a vivid and vibrant color palette, almost fully covering the sRGB color space, can be obtained with this mass-manufacturing-ready fabrication process. The obtained results, thus, provide a solid foundation for the potential industrial adoption of this emerging technology and expose the limits and challenges of the process.

2.
ACS Sens ; 7(8): 2345-2357, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-35943904

NDIR CO2 gas sensors using a 10-cm-long gas channel and CMOS-compatible 12% doped ScAlN pyroelectric detector have previously demonstrated detection limits down to 25 ppm and fast response time of ∼2 s. Here, we increase the doping concentration of Sc to 20% in our ScAlN-based pyroelectric detector and miniaturize the gas channel by ∼65× volume with length reduction from 10 to 4 cm and diameter reduction from 5 to 1 mm. The CMOS-compatible 20% ScAlN-based pyroelectric detectors are fabricated over 8-in. wafers, allowing cost reduction leveraging on semiconductor manufacturing. Cross-sectional TEM images show the presence of abnormally oriented grains in the 20% ScAlN sensing layer in the pyroelectric detector stack. Optically, the absorption spectrum of the pyroelectric detector stack across the mid-infrared wavelength region shows ∼50% absorption at the CO2 absorption wavelength of 4.26 µm. The pyroelectric coefficient of these 20% ScAlN with abnormally oriented grains shows, in general, a higher value compared to that for 12% ScAlN. While keeping the temperature variation constant at 2 °C, we note that the pyroelectric coefficient seems to increase with background temperature. CO2 gas responses are measured for 20% ScAlN-based pyroelectric detectors in both 10-cm-long and 4-cm-long gas channels, respectively. The results show that for the miniaturized CO2 gas sensor, we are able to measure the gas response from 5000 ppm down to 100 ppm of CO2 gas concentration with CO2 gas response time of ∼5 s, sufficient for practical applications as the average outdoor CO2 level is ∼400 ppm. The selectivity of this miniaturized CO2 gas sensor is also tested by mixing CO2 with nitrogen and 49% sulfur hexafluoride, respectively. The results show high selectivity to CO2 with nitrogen and 49% sulfur hexafluoride each causing a minimum ∼0.39% and ∼0.36% signal voltage change, respectively. These results bring promise to compact and miniature low cost CO2 gas sensors based on pyroelectric detectors, which could possibly be integrated with consumer electronics for real-time air quality monitoring.

3.
Appl Opt ; 61(5): B164-B170, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-35201137

Huygens' metasurfaces are transparent arrays of nanostructures that enable phase-front manipulation. This is achieved by simultaneous excitation of electric dipole (ED) and magnetic dipole (MD) resonances with equal amplitudes and phases in the constituent meta-atoms. In usual designs, the size changes of the meta-atoms, necessary to map the phase front, can detune the overlapping of ED and MD resonances, decreasing the transmission and limiting the operating bandwidth. In this report, we demonstrate that ED and MD resonances can be almost perfectly tuned together over a large wavelength range, keeping their spectral overlap, in a silicon metasurface by using anisotropic meta-atoms. In particular, we show near-unity transmission (>95% in simulations) and 2π phase control in a wavelength range from 760 to 815 nm using cuboidal nanoantennas. Using this concept, we also experimentally demonstrate clear reconstruction from holograms of a single metasurface spanning the near infrared and the whole visible spectral range.

4.
Opt Express ; 27(18): 26060-26069, 2019 Sep 02.
Article En | MEDLINE | ID: mdl-31510466

The implementation of polarization controlling components enables additional functionalities of short-wave infrared (SWIR) imagers. The high-performance and mass-producible polarization controller based on Si metasurface is in high demand for the next-generation SWIR imaging system. In this work, we report the first demonstration of all-Si metasurface based polarizing bandpass filters (PBFs) on 12-inch wafers. The PBF achieves a polarization extinction ratio of above 10 dB in power within the passbands. Using the complementary metal-oxide-semiconductor (CMOS) compatible 193nm ArF deep ultra-violet (DUV) immersion lithography and inductively coupled plasma (ICP) etch processing line, a device yield of 82% is achieved.

5.
Sci Rep ; 9(1): 3438, 2019 Mar 05.
Article En | MEDLINE | ID: mdl-30837620

All-dielectric nanophotonics lies at a forefront of nanoscience and technology as it allows to control light at the nanoscale using its electric and magnetic components. Bulk silicon does not experience any magnetic response, nevertheless, we demonstrate that the metasurface made of silicon parallelepipeds allows to excite the magnetic dipole moment leading to the broadening and enhancement of the absorption. Our investigations are underpinned by the numerical predictions and the experimental verifications. Also surprisingly we found that the resonant electric quadrupole moment leads to the enhancement of reflection. Our results can be applied for a development of absorption based devices from miniature dielectric absorbers, filters to solar cells and energy harvesting devices.

6.
Nanoscale ; 11(1): 301-310, 2018 Dec 20.
Article En | MEDLINE | ID: mdl-30534689

Colloidal semiconductor nanoplatelets (NPLs) are highly promising luminescent materials owing to their exceptionally narrow emission spectra. While high-efficiency NPLs in non-polar organic media can be obtained readily, NPLs in aqueous media suffer from extremely low quantum yields (QYs), which completely undermines their potential, especially in biological applications. Here, we show high-efficiency water-soluble CdSe/CdS@Cd1-xZnxS core/crown@shell NPLs formed by layer-by-layer grown and composition-tuned gradient Cd1-xZnxS shells on CdSe/CdS core/crown seeds. Such control of shell composition with monolayer precision and effective peripheral crown passivation, together with the compact capping density of short 3-mercaptopropionic acid ligands, allow for QYs reaching 90% in water, accompanied by a significantly increased photoluminescence lifetime (∼35 ns), indicating the suppression of nonradiative channels in these NPLs. We also demonstrate the controlled attachment of these NPLs without stacking at the nanoscale by taking advantage of their 2D geometry and hydrophilicity. This is a significant step in achieving controlled assemblies and overcoming the stacking process, which otherwise undermines their film formation and performance in optoelectronic applications. Moreover, we show that the parallel orientation of such NPLs achieved by the controlled attachment enables directed emission perpendicular to the surface of the NPL films, which is highly advantageous for light extraction in light-emitting platforms.

7.
Nat Nanotechnol ; 13(11): 1042-1047, 2018 11.
Article En | MEDLINE | ID: mdl-30127475

High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.

8.
Opt Express ; 26(15): 19548-19554, 2018 Jul 23.
Article En | MEDLINE | ID: mdl-30114125

The demonstration of a color display metasurface on a 12-inch silicon wafer with critical dimension (CD) below 100 nm by complementary metal-oxide semiconductor (CMOS) compatible technology is reported for the first time. The 193 nm ArF deep UV immersion lithography is leveraged instead of electron beam lithography (EBL) to pattern the metasurface, which greatly improves the efficiency while keeping a high resolution. The demonstrated metasurface successfully generates the resonant modes and reflects the lights at resonance wavelengths, giving its display in red, green, and blue (RGB) colors. The wafer-level uniformities of CD and reflection characteristic of the metasurface are measured and analyzed. The experimental data show that they are well controlled in the fabrication process. The work provides a promising route towards mass production of dielectric metasurfaces.

9.
ACS Nano ; 12(8): 8616-8624, 2018 Aug 28.
Article En | MEDLINE | ID: mdl-30048106

A hybrid metal-dielectric nanoantenna promises to harness the large Purcell factor of metallic nanostructures while taking advantage of the high scattering directivity and low dissipative losses of dielectric nanostructures. Here, we investigate a compact hybrid metal-dielectric nanoantenna that is inspired by the Yagi-Uda design. It comprises a metallic gold bowtie nanoantenna feed element and three silicon nanorod directors, exhibiting high unidirectional in-plane directivity and potential beam redirection capability in the visible spectral range. The entire device has a footprint of only 0.38 λ2, and its forward directivity is robust against fabrication imperfections. We use the photoluminescence from the gold bowtie nanoantenna itself as an elegant emitter to characterize the directivity of the device and experimentally demonstrate a directivity of ∼49.2. In addition, we demonstrate beam redirection with our device, achieving a 5° rotation of the main emission lobe with a feed element displacement of only 16 nm. These results are promising for various applications, including on-chip wireless communications, quantum computing, display technologies, and nanoscale alignment.

10.
Nano Lett ; 18(3): 2124-2132, 2018 03 14.
Article En | MEDLINE | ID: mdl-29485885

The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

11.
Nano Lett ; 17(12): 7620-7628, 2017 12 13.
Article En | MEDLINE | ID: mdl-29115134

Localized optical resonances in metallic nanostructures have been increasingly used in color printing, demonstrating unprecedented resolution but limited in color gamut. Here, we introduce a new nanostructure design, which broadens the gamut while retaining print resolution. Instead of metals, silicon nanostructures that exhibit localized magnetic and electric dipole resonances were fabricated on a silicon substrate coated with a Si3N4 index matching layer. Index matching allows a suppression of substrate effects, thus enabling Kerker's conditions to be met, that is, sharpened transitions in the reflectance spectra leading to saturated colors. This nanostructure design achieves a color gamut superior to sRGB, and is compatible with CMOS processes. The presented design could enable compact high-resolution color displays and filters, and the use of a Si3N4 antireflection coating can be readily extended to designs with nanostructures fabricated using other high-index materials.

12.
Appl Opt ; 56(17): 5086-5091, 2017 Jun 10.
Article En | MEDLINE | ID: mdl-29047660

Electrically pumped heterogeneously integrated III-V/SiO2 semiconductor on-chip lasers with different types of etched facet reflectors are designed and fabricated and their lasing performances are characterized and compared. The III-V quantum-well-based epitaxial layers are bonded on silica-on-silicon substrates and fabricated to form Fabry-Perot lasers with dry-etched rear facets. Three types of reflectors are demonstrated, which are etched facets terminated by air, benzocyclobutene, and metal with a thin layer of SiO2 insulator in-between. The laser devices are characterized and compared, including lasing threshold, external quantum efficiency, and output power, and show the impact of different types of etched facet reflectors on lasing performance.

13.
Nano Lett ; 17(10): 6267-6272, 2017 10 11.
Article En | MEDLINE | ID: mdl-28898084

Wavefront manipulation in metasurfaces typically relies on phase mapping with a finite number of elements. In particular, a discretized linear phase profile may be used to obtain a beam bending functionality. However, discretization limits the applicability of this approach for high angle bending due to the drastic efficiency drop when the phase is mapped by a small number of elements. In this work, we discuss a novel concept for energy redistribution in diffraction gratings and its application in the visible spectrum range, which helps overcome the constraints of ultrahigh angle (above 80°) beam bending. Arranging asymmetric dielectric nanoantennas into diffractive gratings, we show that one can efficiently redistribute the power between the grating orders at will. This is achieved by precise engineering of the scattering pattern of the nanoantennas. The concept is numerically and experimentally demonstrated at visible frequencies using several designs of TiO2 (titanium dioxide) nanoantennas for medium (∼55°) and high (∼80°) angle light bending. Results show efficient broadband visible-light operation (blue and green range) of transmissive devices, reaching efficiencies of ∼90% and 50%, respectively, at the optimized wavelength. The presented design concept is general and can be applied for both transmission and reflection operation at any desired wavelength and polarization.

14.
Nat Commun ; 7: 10362, 2016 Jan 19.
Article En | MEDLINE | ID: mdl-26783075

Polarization is a key property defining the state of light. It was discovered by Brewster, while studying light reflected from materials at different angles. This led to the first polarizers, based on Brewster's effect. Now, one of the trends in photonics is the study of miniaturized devices exhibiting similar, or improved, functionalities compared with bulk optical elements. In this work, it is theoretically predicted that a properly designed all-dielectric metasurface exhibits a generalized Brewster's effect potentially for any angle, wavelength and polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible wavelengths. The underlying physics is related to the suppressed scattering at certain angles due to the interference between the electric and magnetic dipole resonances excited in the nanoparticles. These findings open doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific polarization or angle of incidence.

15.
Nat Commun ; 5: 3104, 2014.
Article En | MEDLINE | ID: mdl-24430506

Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.

16.
Nat Commun ; 4: 1527, 2013.
Article En | MEDLINE | ID: mdl-23443555

Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago. Here we show that directivity of the far-field radiation pattern of single silicon spheres can be strongly dependent on the light wavelength and the nanoparticle size. For nanoparticles with sizes ranging from 100 to 200 nm, forward-to-backward scattering ratio above six can be experimentally obtained, making them similar to 'Huygens' sources. Unique optical properties of silicon nanoparticles make them promising for design of novel low-loss visible- and telecom-range metamaterials and nanoantenna devices.

17.
Sci Rep ; 2: 492, 2012.
Article En | MEDLINE | ID: mdl-22768382

Spherical silicon nanoparticles with sizes of a few hundreds of nanometers represent a unique optical system. According to theoretical predictions based on Mie theory they can exhibit strong magnetic resonances in the visible spectral range. The basic mechanism of excitation of such modes inside the nanoparticles is very similar to that of split-ring resonators, but with one important difference that silicon nanoparticles have much smaller losses and are able to shift the magnetic resonance wavelength down to visible frequencies. We experimentally demonstrate for the first time that these nanoparticles have strong magnetic dipole resonance, which can be continuously tuned throughout the whole visible spectrum varying particle size and visually observed by means of dark-field optical microscopy. These optical systems open up new perspectives for fabrication of low-loss optical metamaterials and nanophotonic devices.

18.
ACS Nano ; 6(6): 5130-7, 2012 Jun 26.
Article En | MEDLINE | ID: mdl-22577794

In this article, we investigate higher order (quadrupolar, octupolar, hexadecapolar, and triakontadipolar) Fano resonances generated in disk ring (DR) silver plasmonic nanostructures. We find that the higher order Fano resonances are generated when the size of the disk is reduced and falls into a certain range. With dual-disk ring (DDR) nanostructures, a rich set of tunable Fano line shapes is provided. More specifically, we report our observations on the optical behavior of the DDRs including asymmetric cases either in two disks with different sizes or their asymmetric locations inside the ring. In the case of symmetric dual-disk ring (SDDR) nanostructures, we demonstrate that the quadrupolar and the hexadecapolar Fano resonances are suppressed, which can reduce the cross-talk in spectroscopic measurements, while the octupolar and the triakontadipolar Fano resonances are enhanced. The potential of using the studied plasmonic nanostructures as biochemical sensors is evaluated with the figure of merit (FOM) and the contrast ratio (CR). The values of the FOM and the CR achieved using the triakontadipolar Fano resonance in the SDDR are 17 and 57%, respectively. These results indicate that the SDDRs could be developed into a high-performance biochemical sensor in the visible wavelength range.


Nanoparticles/chemistry , Nanoparticles/ultrastructure , Surface Plasmon Resonance/methods , Materials Testing , Particle Size
19.
Opt Express ; 19(23): 22974-81, 2011 Nov 07.
Article En | MEDLINE | ID: mdl-22109176

A dual-disk ring (DDR) structure with broken symmetry and weakly dissipating material, silver, is proposed to achieve Fano resonance in visible wavelength range. Symmetry breaking of a metallic ring is realized by placing two disks inside the ring. The excitation of the Fano resonance is interpreted in terms of coupling of the ring and the dual-disk plasmonic modes. The potential of using an array of such DDR nano structures as a biochemical sensor is evaluated with the figure of merit (FOM). Based on our design and simulation, arrays with DDR structures are fabricated and the Fano resonance peak is observed in visible wavelength range of extinction spectra of individual silver DDR nanostructures.


Nanostructures/chemistry , Optical Phenomena , Surface Plasmon Resonance , Computer Simulation , Nanostructures/ultrastructure , Refractometry , Silver/chemistry , Spectrometry, Fluorescence
20.
Scanning ; 26(5 Suppl 1): I52-6, 2004.
Article En | MEDLINE | ID: mdl-15540814

This paper deals with both theoretical and experimental studies of near-field imaging of the focused laser spot. In theoretical simulation, we calculate the intensity distribution in the focal region of the apodized light source. Size reduction of the focusing spot of an annular light beam is found to be related with various epsilon, which is the ratio of the obstruction radius to the radius of lens aperture. The experimental setup is based on a near-field scanning optical microscope (NSOM) system. An opaque disk is used to make an annular beam. A high numerical aperture objective lens (NA = 0.8) is used to focus incident lights of different annular light beams, and a tapered near-field optical fiber probe of the NSOM system is used to collect the intensity of the focal field. Results demonstrate that a better transverse resolution can be obtained from the reduction of the focusing spot. The intensity profile of an annular beam may have a significant influence on the size reduction of the focusing spot.

...