Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 695-704, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646757

To understand the effects of different stover mulching amounts in no-tillage on soil carbon and nitrogen contents and enzyme activities, finding a stover mulching amount which can meet the requirement of soil carbon and nitrogen accumulation while maximizing economic benefits, we conducted a long-term conservation tillage field experiment since 2007 in Mollisols area of Northeast China. We analyzed soil carbon and nitrogen contents, enzyme activities and economic benefits under conventional tillage (Control, CT), no-tillage without stover mulching (NT0), no-tillage with 33% stover mulching (NT33), no-tillage with 67% stover mulching (NT67), and no-tillage with 100% stover mulching (NT100) before planting in May 2020. The results showed that compared with CT, NT0 did not affect soil organic carbon (SOC) and total nitrogen (TN) contents, but increased soil organic carbon recalcitrance and decreased the availability of dissolved organic nitrogen (DON) and ammonium nitrogen. Compared with NT0, no-tillage with stover mulching significantly increased SOC contents in 0-10 cm layer and increased with the amounts of stover. In addition, NT67 and NT100 significantly increased SOC stocks, facilitating the accumulation of soil organic matter. The effects of different stover mulching amounts on soil nitrogen content in 0-10 cm layer were different. Specifically, NT33 increased DON content and DON/TN, NT67 increased DON content, while NT100 increased TN content. Compared with CT, NT0 decreased peroxidase (POD) activity in 0-10 cm layer. Compared with NT0, NT33 increased ß-glucosidase (ßG), cellobiase (CB), 1,4-ß-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO) and POD activities, while NT67 only increased CB, NAG and POD activities in 0-10 cm soil layer, both alleviated microbial nutrient limitation. NT100 increased PPO activity in 10-20 cm layer. NT33 increased carbon conversion efficiency of stover compared with NT100, and had the highest economic benefit. In all, no-tillage with 33% stover mulching was the optimal strategy, which could promote nutrient circulation, boost stover utilization efficiency, improve the quality of Mollisols, and maximize guaranteed income.


Agriculture , Carbon , Nitrogen Cycle , Nitrogen , Soil , Nitrogen/metabolism , Nitrogen/analysis , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Agriculture/methods , China
3.
Brain Pathol ; : e13261, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602336

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

4.
PLoS One ; 19(4): e0299019, 2024.
Article En | MEDLINE | ID: mdl-38593113

Multiple myeloma (MM) is the second most prevalent hematologic malignancy which remains uncurable. Numerous drugs have been discovered to inhibit MM cells. Indisulam, an aryl sulfonamide, has a potent anti-myeloma activity in vitro and in vivo. This study aims to explore the new mechanism of indisulam and investigate its potential use in combination with melphalan. We examined DNA damage in MM cells through various methods such as western blotting (WB), immunofluorescence, and comet assay. We also identified the role of topoisomerase IIα (TOP2A) using bioinformatic analyses. The impact of indisulam on the RNA and protein levels of TOP2A was investigated through qPCR and WB. Cell proliferation and apoptosis were assessed using CCK-8 assays, Annexin V/PI assays and WB. We predicted the synergistic effect of the combination treatment based on calculations performed on a website, and further explored the effect of indisulam in combination with melphalan on MM cell lines and xenografts. RNA sequencing data and basic experiments indicated that indisulam caused DNA damage and inhibited TOP2A expression by decreasing transcription and promoting degradation via the proteasome pathway. Functional experiments revealed that silencing TOP2A inhibited cell proliferation and induced apoptosis and DNA damage. Finally, Indisulam/melphalan combination treatment demonstrated a strong synergistic anti-tumor effect compared to single-agent treatments in vitro and in vivo. These findings suggest that combination therapies incorporating indisulam and melphalan have the potential to enhance treatment outcomes for MM.


Melphalan , Multiple Myeloma , Humans , Melphalan/pharmacology , Melphalan/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
5.
Cortex ; 174: 241-255, 2024 05.
Article En | MEDLINE | ID: mdl-38582629

Shape is a property that could be perceived by vision and touch, and is classically considered to be supramodal. While there is mounting evidence for the shared cognitive and neural representation space between visual and tactile shape, previous research tended to rely on dissimilarity structures between objects and had not examined the detailed properties of shape representation in the absence of vision. To address this gap, we conducted three explicit object shape knowledge production experiments with congenitally blind and sighted participants, who were asked to produce verbal features, 3D clay models, and 2D drawings of familiar objects with varying levels of tactile exposure, including tools, large nonmanipulable objects, and animals. We found that the absence of visual experience (i.e., in the blind group) led to stronger differences in animals than in tools and large objects, suggesting that direct tactile experience of objects is essential for shape representation when vision is unavailable. For tools with rich tactile/manipulation experiences, the blind produced overall good shapes comparable to the sighted, yet also showed intriguing differences. The blind group had more variations and a systematic bias in the geometric property of tools (making them stubbier than the sighted), indicating that visual experience contributes to aligning internal representations and calibrating overall object configurations, at least for tools. Taken together, the object shape representation reflects the intricate orchestration of vision, touch and language.


Blindness , Touch Perception , Humans , Blindness/psychology , Vision, Ocular , Touch
6.
Shock ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38662604

OBJECTIVES: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. METHODS: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the weighted gene coexpression network analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. ScRNA-seq data were also analysed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. RESULTS: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by TTM could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability and cell proliferation as well as the immune status of the host. CONCLUSION: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, while the correlation between copper and the observed changes in GLS requires further investigation.

7.
Neurotoxicology ; 102: 81-95, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38599287

BACKGROUND: Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS: Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS: TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS: NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.

8.
Int J Biochem Cell Biol ; 170: 106559, 2024 May.
Article En | MEDLINE | ID: mdl-38499237

Yes-associated protein (YAP)-a major effector protein of the Hippo pathway- regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP's binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.


Neoplasms , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , AMP-Activated Protein Kinases , Verteporfin , Cellular Senescence , Cell Differentiation , Cell Proliferation
9.
Environ Res ; 251(Pt 2): 118655, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38479717

Some nano-biochars (nano-BCs) as electron mediators could enter into cells to directly promote intracellular electron transfer and cell activities. However, little information was available on the effect of nano-BCs on SMX degradation. In this study, nano-BCs were prepared using sludge-derived humic acid (SHA) and their effects on SMX degradation by Shewanella oneidensis MR-1 were investigated. Results showed that nano-BCs (Carbon dots, CDs, <10 nm) synthesized using SHA performed a better accelerating effect than that of the nano-BCs with a larger size (10-100 nm), which could be attributed to the better electron transfer abilities of CDs. The degradation rate of 10 mg/L SMX in the presence of 100 mg/L CDs was significantly increased by 84.6% compared to that without CDs. Further analysis showed that CDs could not only be combined with extracellular Fe(III) to accelerate its reduction, but also participate in the reduction of 4-aminobenzenesulphonic acid as an intermediate metabolite of SMX via coupling with extracellular Fe(III) reduction. Meanwhile, CDs could enter cells to directly participate in intracellular electron transfer, resulting in 32.2% and 25.2% increases of electron transfer system activity and ATP level, respectively. Moreover, the activities of SMX-degrading enzymes located in periplasm and cytoplasm were increased by around 2.2-fold in the presence of CDs. These results provide an insight into the accelerating effect of nano-BCs with the size of <10 nm on SMX degradation and an approach for SHA utilization.

10.
J Nanobiotechnology ; 22(1): 59, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347563

BACKGROUND: Coordination between osteo-/angiogenesis and the osteoimmune microenvironment is essential for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing complex bone defects in clinical practice, it is essential to endow 3D-printed scaffold the above key capabilities. RESULTS: Herein, by introducing xonotlite nanofiber (Ca6(Si6O17) (OH)2, CS) into the 3D-printed silk fibroin/gelatin basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo-/angiogenic differentiation of bone mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone repair and create a regeneration-friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 and Smad7, both of which participate in the transforming growth factor-ß (TGF-ß) signaling pathway. CONCLUSION: Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro-osteo-/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions into account.


Calcium Compounds , Nanofibers , Silicates , Tissue Scaffolds , Tissue Scaffolds/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Angiogenesis , Bone Regeneration , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Osteogenesis , Tissue Engineering
11.
Environ Sci Technol ; 58(5): 2393-2403, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38268063

Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.


Denitrification , Nitrites , Nitrites/metabolism , Nitrites/pharmacology , Carbon , Anaerobiosis , Proteomics , Nitrogen/metabolism , Nitrogen/pharmacology
12.
J Gene Med ; 26(1): e3595, 2024 Jan.
Article En | MEDLINE | ID: mdl-37730959

BACKGROUND: Multiple myeloma (MM) is a malignancy in which plasma cells proliferate abnormally, and it remains incurable. The cells are characterized by high levels of endoplasmic reticulum stress (ERS) and depend on the ERS response for survival. Thus, we aim to find an ERS-related signature of MM and assess its diagnostic value. METHODS: We downloaded three datasets of MM from the Gene Expression Omnibus database. After identifying ERS-related differentially expressed genes (ERDEGs), we analyzed them using Gene Ontology enrichment analysis. A protein-protein interaction network, a transcription factor-mRNA network, a miRNA-mRNA network and a drug-mRNA network were constructed to explore the ERDEGs. The clinical application of these genes was identified by calculating the infiltration of immune cells and using receiver operating characteistic analyses. Finally, qPCR was performed to further confirm the roles of ERDEGs. RESULTS: We obtained nine ERDEGs of MM. Gene Ontology enrichment indicated that the ERDEGs played a role in the endoplasmic reticulum membrane. Additionally, the protein-protein interaction network showed interaction among the ERDEGs, and there were 20 proteins, 107 transcription factors, 42 drugs or molecular compounds and 51 miRNAs which were likely to interact with the nine genes. In addition, immune cell infiltration analyses showed that there was a strong correlation between the nine genes and immune cells, and these potential biomarkers exhibited good diagnostic values. Finally, the expression of ERDEGs in MM cells was different from that in healthy donor samples. CONCLUSION: The nine ERS-related genes, CR2, DHCR7, DNAJC3, KDELR2, LPL, OSBPL3, PINK1, VCAM1 and XBP1 are potential biomarkers of MM, and this supports further clinical development of the diagnosis and treatment of MM.


MicroRNAs , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Endoplasmic Reticulum Stress/genetics , Gene Ontology , MicroRNAs/genetics , Biomarkers , RNA, Messenger/genetics , Vesicular Transport Proteins
13.
Food Chem ; 439: 138104, 2024 May 01.
Article En | MEDLINE | ID: mdl-38043284

Anthocyanins are natural polyphenols belonging to the flavonoid family that possess a variety of putative health benefits when consumed in a balanced diet. However, applications of anthocyanins in, for example, functional foods are limited due to poor stability, degradation, and low transmembrane efficiency. To maintain bioactivities of anthocyanins and optimize their use, various carrier materials have been developed. Here, we reviewed the uses of the different carrier materials (organic/inorganic, micro/nano) for anthocyanin encapsulation and delivery over the past five years. The performance of different materials and interactions between anthocyanins and these materials are described. Lastly, we give our perspective on the future development trend of anthocyanin encapsulation strategies.


Anthocyanins , Flavonoids , Anthocyanins/metabolism , Polyphenols
14.
Orphanet J Rare Dis ; 18(1): 356, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37974208

BACKGROUND: Limb-girdle muscular dystrophies (LGMDs) are a group of heterogeneous inherited diseases predominantly characterized by limb-girdle muscle weakness and dystrophic changes on histological analysis. The frequency of LGMD subtypes varies among regions in China and ethnic populations worldwide. Here, we analyzed the prevalence of LGMD subtypes, their corresponding clinical manifestations, and molecular data in a cohort of LGMD patients in Southeast China. METHODS: A total of 81 consecutive patients with clinically suspected LGMDs from 62 unrelated families across Southeast China were recruited for targeted next-generation sequencing and whole-exome sequencing from July 2017 to February 2020. RESULTS: Among 50 patients (41 families) with LGMDs, the most common subtypes were LGMD-R2/LGMD2B (36.6%) and LGMD-R1/LGMD2A (29.3%). Dystroglycanopathies (including LGMD-R9/LGMD2I, LGMD-R11/LGMD2K, LGMD-R14/LGMD2N and LGMD-R20/LGMD2U) were the most common childhood-onset subtypes and were found in 12.2% of the families. A total of 14.6% of the families had the LGMD-R7/LGMD2G subtype, and the mutation c.26_33dupAGGTGTCG in TCAP was the most frequent (83.3%). The only patient with the rare subtype LGMD-R18/LGMD2S had TRAPPC11 mutations; had a later onset than those previously reported, and presented with proximal‒distal muscle weakness, walking aid dependency, fatty liver disease and diabetes at 33 years of age. A total of 22.0% of the patients had cardiac abnormalities, and one patient with LMNA-related muscular dystrophy/LGMD1B experienced sudden cardiac death at 37 years of age. A total of 15.4% of the patients had restrictive respiratory insufficiency. Muscle imaging in patients with LGMD-R1/LGMD2A and LGMD-R2/LGMD2B showed subtle differences, including more severe fatty infiltration of the posterior thigh muscles in those with LGMD-R1/LGMD2A and edema in the lower leg muscles in those with LGMD-R2/LGMD2B. CONCLUSION: We determined the prevalence of different LGMD subtypes in Southeast China, described the detailed clinical manifestations and distinct muscle MRI patterns of these LGMD subtypes and reported the frequent mutations and the cardiorespiratory involvement frequency in our cohort, all of which might facilitate the differential diagnosis of LGMDs, allowing more timely treatment and guiding future clinical trials.


East Asian People , Muscular Dystrophies, Limb-Girdle , Humans , Child , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscle, Skeletal/pathology , Muscle Weakness/pathology
15.
World J Gastroenterol ; 29(40): 5582-5592, 2023 Oct 28.
Article En | MEDLINE | ID: mdl-37970473

BACKGROUND: Programmed death 1 (PD-1) and CD4+CD25+FoxP3+ expression in peripheral blood T-cells has been previously reported in various types of cancer. However, the specific variation tendency during surgery and chemotherapy, as well as their relationship in gastric cancer patients, still remain unclear. Understanding this aspect may provide some novel insights for future studies on tumor recurrence and tumor immune escape, and also serve as a reference for determining the optimal timing and dose of clinical anti-PD-1 antibodies. AIM: To observe and analyze the expression characteristics of peripheral lymphocyte PD-1 and FoxP3+ regulatory T cells (FoxP3+ Tregs) before and after surgery or chemotherapy in gastric cancer patients. METHODS: Twenty-nine stomach cancer patients undergoing chemotherapy after a D2 gastrectomy provided 10 mL peripheral blood samples at each phase of the perioperative period and during chemotherapy. This study also included 29 age-matched healthy donors as a control group. PD-1 expression was detected on lymphocytes, including CD4+CD8+CD45RO+, CD4+CD45RO+, and CD8+CD45RO+ lymphocytes as well as regulatory T cells. RESULTS: We observed a significant increase of PD-1 expression on immune subsets and a larger number of FoxP3+ Tregs in gastric cancer patients (P < 0.05). Following D2 gastrectomy, peripheral lymphocytes PD-1 expression and the number of FoxP3+ Tregs notably decrease (P < 0.05). However, during postoperative chemotherapy, we only observed a decrease in PD-1 expression on lymphocytes in the CD8+CD45RO+ and CD8+CD45RO+ populations. Additionally, linear correlation analysis indicated a positive correlation between PD-1 expression and the number of CD4+CD45RO+FoxP3high activated Tregs (aTregs) on the total peripheral lymphocytes (r = 0.5622, P < 0.0001). CONCLUSION: The observed alterations in PD-1 expression and the activation of regulatory T cells during gastric cancer treatment may offer novel insights for future investigations into tumor immune evasion and the clinical application of anti-PD-1 antibodies in gastric cancer.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/surgery , Programmed Cell Death 1 Receptor/metabolism , Neoplasm Recurrence, Local/pathology , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism
16.
World J Gastrointest Oncol ; 15(9): 1616-1625, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37746642

BACKGROUND: The multidisciplinary team (MDT) has been carried out in many large hospitals now. However, given the costs of time and money and with little strong evidence of MDT effectiveness being reported, critiques of MDTs persist. AIM: To evaluate the effects of MDTs on patients with synchronous colorectal liver metastases and share our opinion on management of synchronous colorectal liver metastases. METHODS: In this study we collected clinical data of patients with synchronous colorectal liver metastases from February 2014 to February 2017 in the Chinese People's Liberation Army General Hospital and subsequently divided them into an MDT+ group and an MDT- group. In total, 93 patients in MDT+ group and 169 patients in MDT- group were included totally. RESULTS: Statistical increases in the rate of chest computed tomography examination (P = 0.001), abdomen magnetic resonance imaging examination (P = 0.000), and preoperative image staging (P = 0.0000) were observed in patients in MDT+ group. Additionally, the proportion of patients receiving chemotherapy (P = 0.019) and curative resection (P = 0.042) was also higher in MDT+ group. Multivariable analysis showed that the population of patients assessed by MDT meetings had higher 1-year [hazard ratio (HR) = 0.608, 95% confidence interval (CI): 0.398-0.931, P = 0.022] and 5-year (HR = 0.694, 95%CI: 0.515-0.937, P = 0.017) overall survival. CONCLUSION: These results proved that MDT management did bring patients with synchronous colorectal liver metastases more opportunities for comprehensive examination and treatment, resulting in better outcomes.

17.
Huan Jing Ke Xue ; 44(8): 4637-4646, 2023 Aug 08.
Article Zh | MEDLINE | ID: mdl-37694656

A reasonable definition of carbon emission responsibility and inter-provincial carbon compensation is an important approach to promote regional coordinated emission reduction. Here, based on the 2017 multi-regional input-output table, carbon emissions from provinces were decomposed by using the value-added trade decomposition method, the embodied carbon flows between provinces were measured, and a differentiated carbon compensation mechanism based on emission reduction cost was designed, which provides the reference for China to carry out horizontal carbon compensation. The main conclusions were as follows:①the carbon emissions caused by the final demand within the province accounted for 53.56%, whereas the carbon emissions caused by the final demand outside the province accounted for 32.49%. The embodied carbon flows among provinces showed a significant existence. ②The embodied carbon showed a significant flow characteristic of transferring from the northern and central regions to the Beijing-Tianjin region and the southeastern coastal regions. ③From the perspective of producers, consumers, and shared responsibility, the total carbon emissions of provinces and cities were equal, and the distribution idea of shared responsibility reflected the "benefit principle." ④There were differences in carbon emission reduction costs between provinces. In areas with low carbon emission reduction costs, direct carbon emissions were high, and the industries were dominated by heavy industry. In areas with high carbon emission reduction costs, direct carbon emissions were low, and the industries were high-tech industries and service industries. ⑤The amount of compensation to be paid/accepted by provinces varied based on the cost of emission reduction. Among them, Guangdong had the highest amount of compensation to be paid, and Inner Mongolia had the highest amount of compensation to be accepted.

18.
Am J Transl Res ; 15(7): 4487-4503, 2023.
Article En | MEDLINE | ID: mdl-37560208

BACKGROUND: Obstructive sleep apnea (OSA) and osteoarthritis (OA) are highly prevalent and seriously affect the patient's quality of life. Patients with OSA have a high incidence of OA, however, the underlying mechanism remains unclear. Here, we investigated the molecular link between OSA and OA via bioinformatics analysis and experimental validation. METHODS: We downloaded a peripheral blood monocyte microarray profile (GSE75097) for patients with OSA and two synovial microarray profiles (GSE55235 and GSE55457) for patients with OA from the Gene Expression Omnibus database. We identified OSA-associated differentially expressed genes (OSA-DEGs) in patients with OA. Additionally, we constructed protein-protein interaction networks to identify the key genes involved in OA. Immunohistochemistry was performed to verify the expression of key genes in OA rat models. RNA interference assay was performed to validate the effects of key genes on synovial cells. Gene-miRNA, gene-transcription factor, and gene-drug networks were constructed to predict the regulatory molecules and drugs for OA. RESULTS: Fifteen OSA-DEGs screened using the threshold criteria were enriched in the tumor necrosis factor (TNF) pathway. Combining the 12 algorithms of CytoHubba, we identified JUNB, JUN, dual specificity phosphatase 1 (DUSP1), and TNF-alpha-induced protein 3 (TNFAIP3) as the key OSA-DEGs involved in OA development. Immunohistochemistry and quantitative polymerase chain reaction revealed that these key genes were downregulated in the OA synovium, promoting TNF-α expression. Therefore, OSA-DEGs, JUN, JUNB, DUSP1, and TNFAIP3 function in OA by increasing TNF-α expression. Our findings provide insights on the mechanisms underlying the effects of OSA on OA.

19.
Foods ; 12(15)2023 Jul 27.
Article En | MEDLINE | ID: mdl-37569129

In this work, a pH-driven method was used to prepare zein-soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein-SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein-SPI NPs, Cur/Dio-loaded zein-SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0-800 µg/mL blank-loaded zein-SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein-SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.

20.
Cereb Cortex ; 33(15): 9280-9290, 2023 07 24.
Article En | MEDLINE | ID: mdl-37280751

Shape processing, whether by seeing or touching, is pivotal to object recognition and manipulation. Although the low-level signals are initially processed by different modality-specific neural circuits, multimodal responses to object shapes have been reported along both ventral and dorsal visual pathways. To understand this transitional process, we conducted visual and haptic shape perception fMRI experiments to test basic shape features (i.e. curvature and rectilinear) across the visual pathways. Using a combination of region-of-interest-based support vector machine decoding analysis and voxel selection method, we found that the top visual-discriminative voxels in the left occipital cortex (OC) could also classify haptic shape features, and the top haptic-discriminative voxels in the left posterior parietal cortex (PPC) could also classify visual shape features. Furthermore, these voxels could decode shape features in a cross-modal manner, suggesting shared neural computation across visual and haptic modalities. In the univariate analysis, the top haptic-discriminative voxels in the left PPC showed haptic rectilinear feature preference, whereas the top visual-discriminative voxels in the left OC showed no significant shape feature preference in either of the two modalities. Together, these results suggest that mid-level shape features are represented in a modality-independent manner in both the ventral and dorsal streams.


Pattern Recognition, Visual , Visual Perception , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Occipital Lobe/diagnostic imaging , Touch/physiology , Parietal Lobe , Magnetic Resonance Imaging/methods , Brain Mapping
...