Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(6): 4442-4462, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502780

RESUMEN

Relaxin H2 is a clinically relevant peptide agonist for relaxin family peptide receptor 1 (RXFP1), but a combination of this hormone's short plasma half-life and the need for injectable delivery limits its therapeutic potential. We sought to overcome these limitations through the development of a potent small molecule (SM) RXFP1 agonist. Although two large SM HTS campaigns failed in identifying suitable hit series, we uncovered novel chemical space starting from the only known SM RXFP1 agonist series, represented by ML290. Following a design-make-test-analyze strategy based on improving early dose to man ranking, we discovered compound 42 (AZ7976), a highly selective RXFP1 agonist with sub-nanomolar potency. We used AZ7976, its 10 000-fold less potent enantiomer 43 and recombinant relaxin H2 to evaluate in vivo pharmacology and demonstrate that AZ7976-mediated heart rate increase in rats was a result of RXFP1 agonism. As a result, AZ7976 was selected as lead for continued optimization.


Asunto(s)
Relaxina , Humanos , Masculino , Ratas , Animales , Relaxina/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas
2.
J Med Chem ; 67(6): 4419-4441, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502782

RESUMEN

Optimization of the highly potent and selective, yet metabolically unstable and poorly soluble hRXFP1 agonist AZ7976 led to the identification of the clinical candidate, AZD5462. Assessment of RXFP1-dependent cell signaling demonstrated that AZD5462 activates a highly similar panel of downstream pathways as relaxin H2 but does not modulate relaxin H2-mediated cAMP second messenger responsiveness. The therapeutic potential of AZD5462 was assessed in a translatable cynomolgus monkey heart failure model. Following 8 weeks of treatment with AZD5462, robust improvements in functional cardiac parameters including LVEF were observed at weeks 9, 13, and 17 without changes in heart rate or mean arterial blood pressure. AZD5462 was well tolerated in both rat and cynomolgus monkey and has successfully completed phase I studies in healthy volunteers. In summary, AZD5462 is a small molecule pharmacological mimetic of relaxin H2 signaling at RXFP1 and holds promise as a potential therapeutic approach to treat heart failure patients.


Asunto(s)
Insuficiencia Cardíaca , Relaxina , Humanos , Ratas , Animales , Relaxina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Macaca fascicularis/metabolismo , Receptores de Péptidos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA