Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 198, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071487

RESUMEN

BACKGROUND: Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS: We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS: These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Cuerpos Pedunculados , Receptores Citoplasmáticos y Nucleares , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo
2.
Front Behav Neurosci ; 15: 768694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803626

RESUMEN

When presented with the choice, Drosophila melanogaster females will often prefer to lay eggs on food containing a significant amount of alcohol. While, in some cases, this behavioral decision can provide a survival advantage to the developing larvae, it can also lead to developmental and cognitive problems. Alcohol consumption can affect executive functions, episodic memory, and other brain function capacities. However, in the fruit fly, the initial cognitive effects of alcohol consumption have been shown to reverse upon persistent exposure to alcohol. Using an olfactory conditioning assay where an odorant is implemented as a conditioned stimulus and paired with a heat shock as an unconditioned stimulus, a previous study has shown that when exposed to a short acute dose of alcohol, Drosophila larvae can no longer learn this association. Interestingly, upon prolonged chronic alcohol exposure, larvae seem to successfully avoid the conditioned stimulus just as well as control alcohol-naive larvae, suggestive of alcohol-induced neuroadaptations. However, the mechanisms by which Drosophila adapt to the presence of alcohol remains unknown. In this study, we explore the transcriptional correlates of neuroadaptation in Drosophila larvae exposed to chronic alcohol to understand the genetic and cellular components responsible for this adaptation. For this, we employed RNA sequencing technology to evaluate differences in gene expression in the brain of larvae chronically exposed to alcohol. Our results suggest that alcohol-induced neuroadaptations are modulated by a diverse array of synaptic genes within the larval brain through a series of epigenetic modulators.

3.
J Neurochem ; 156(3): 337-351, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32596813

RESUMEN

A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.


Asunto(s)
Cuerpos Pedunculados/metabolismo , Octopamina/metabolismo , Percepción Olfatoria/fisiología , Serotonina/metabolismo , Animales , Condicionamiento Clásico , Dopamina/metabolismo , Drosophila melanogaster , Memoria/fisiología , Neuronas/metabolismo
4.
Front Neurosci ; 14: 319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362810

RESUMEN

Recent studies have identified the Drosophila brain circuits involved in the sleep/wake switch and have pointed to the modulation of neuronal excitability as one of the underlying mechanisms triggering sleep need. In this study we aimed to explore the link between the homeostatic regulation of neuronal excitability and sleep behavior in the circadian circuit. For this purpose, we selected Pumilio (Pum), whose main function is to repress protein translation and has been linked to modulation of neuronal excitability during chronic patterns of altered neuronal activity. Here we explore the effects of Pum on sleep homeostasis in Drosophila melanogaster, which shares most of the major features of mammalian sleep homeostasis. Our evidence indicates that Pum is necessary for sleep rebound and that its effect is more pronounced during chronic sleep deprivation (84 h) than acute deprivation (12 h). Knockdown of pum, results in a reduction of sleep rebound during acute sleep deprivation and the complete abolishment of sleep rebound during chronic sleep deprivation. Based on these findings, we propose that Pum is a critical regulator of sleep homeostasis through neural adaptations triggered during sleep deprivation.

5.
Dev Biol ; 458(1): 32-42, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606342

RESUMEN

The complexity of the nervous system requires the coordination of multiple cellular processes during development. Among them, we find boundary formation, axon guidance, cell migration and cell segregation. Understanding how different cell populations such as glial cells, developing neurons and neural stem cells contribute to the formation of boundaries and morphogenesis in the nervous system is a critical question in neurobiology. Slit is an evolutionary conserved protein essential for the development of the nervous system. For signaling, Slit has to bind to its cognate receptor Robo, a single-pass transmembrane protein. Although the Slit/Robo signaling pathway is well known for its involvement in axon guidance, it has also been associated to boundary formation in the Drosophila visual system. In the optic lobe, Slit is expressed in glial cells, positioned at the boundaries between developing neuropils, and in neurons of the medulla ganglia. Although it has been assumed that glial cells provide Slit to the system, the contribution of the neuronal expression has not been tested. Here, we show that, contrary to what was previously thought, Slit protein provided by medulla neurons is also required for boundary formation and morphogenesis of the optic lobe. Furthermore, tissue specific rescue using modified versions of Slit demonstrates that this protein acts at long range and does not require processing by extracellular proteases. Our data shed new light on our understanding of the cellular mechanisms involved in Slit function in the fly visual system morphogenesis.


Asunto(s)
Orientación del Axón/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neurópilo/fisiología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Elementos de Facilitación Genéticos , Técnicas de Silenciamiento del Gen , Genes Reporteros , Estudios de Asociación Genética , Larva , Morfogénesis , Mutación , Proteínas del Tejido Nervioso/genética , Neuroglía/fisiología , Neurópilo/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Especificidad de Órganos , Fenotipo , Estimulación Luminosa , Pupa , Interferencia de ARN , Receptores Inmunológicos/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transgenes , Proteínas Roundabout
6.
Neuroscience ; 371: 433-444, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29292079

RESUMEN

The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila.


Asunto(s)
Reacción de Prevención/fisiología , Dopamina/metabolismo , Drosophila/metabolismo , Actividad Motora/fisiología , Percepción Olfatoria/fisiología , Animales , Animales Modificados Genéticamente , Reacción de Prevención/efectos de los fármacos , Drosophila/anatomía & histología , Proteínas de Drosophila/metabolismo , Canales Iónicos , Actividad Motora/efectos de los fármacos , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Percepción Olfatoria/efectos de los fármacos , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Olfato/efectos de los fármacos , Olfato/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2882-2890, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28716706

RESUMEN

Parkinson's disease (PD) is a degenerative disorder characterized by several motor symptoms including shaking, rigidity, slow movement and difficult walking, which has been associated to the death of nigro-striatal dopaminergic neurons. >90% of PD patients also present olfactory dysfunction. Although the molecular mechanisms responsible for this disease are not clear, hereditary PD is linked to mutations in specific genes, including the PTEN-induced putative kinase 1 (PINK1). In this work we provide for the first time a thorough temporal description of the behavioral effects induced by a mutation in the PINK1 gene in adult Drosophila, a previously described animal model for PD. Our data suggests that the motor deficits associated to PD are fully revealed only by the third week of age. However, olfactory dysfunction is detected as early as the first week of age. We also provide immunofluorescence and neurochemical data that let us propose for the first time the idea that compensatory changes occur in this Drosophila model for PD. These compensatory changes are associated to specific components of the dopaminergic system: the biosynthetic enzymes, Tyrosine hydroxylase and Dopa decarboxylase, and the Dopamine transporter, a plasma membrane protein involved in maintaining dopamine extracellular levels at physiologically relevant levels. Thus, our behavioral, immunofluorescence and neurochemical data help define for the first time presymptomatic and symptomatic phases in this PD animal model, and that compensatory changes occur in the dopaminergic neurons in the presymptomatic stage.


Asunto(s)
Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
ACS Chem Neurosci ; 8(10): 2168-2179, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28665105

RESUMEN

A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Mutación/genética , Serotoninérgicos/metabolismo , Serotoninérgicos/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
9.
J Neurochem ; 125(2): 281-90, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23331098

RESUMEN

Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose-dependent efflux of endogenous BAs, an effect mediated by α-bungarotoxin-sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR-induced Oct release could have implications in a nicotine-induced behavioral response.


Asunto(s)
Drosophila melanogaster/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Octopamina/metabolismo , Receptores Nicotínicos/metabolismo , Reflejo de Sobresalto/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Técnicas Electroquímicas , Masculino , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA