Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(13): 137401, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623855

RESUMEN

Dispersionless energy bands in k space are a peculiar property gathering increasing attention for the emergence of novel electronic, magnetic, and photonic properties. Here, we explore the impact of electronic flat bands on the light-matter interaction. The van der Waals interaction between the atomic layers of hexagonal boron nitride induces flat bands along specific lines of the Brillouin zone. The macroscopic degeneracy along these lines leads to van Hove singularities with divergent joint density of states, resulting in outstanding optical properties of the excitonic states. For the direct exciton, we report a giant oscillator strength with a longitudinal-transverse splitting of 420 meV, a record value, confirmed by our ab initio calculations. For the fundamental indirect exciton, flat bands result in phonon-assisted processes of exceptional efficiency, that compete with direct absorption in reflectivity, and that make the internal quantum efficiency close to values typical of direct band gap semiconductors.

2.
J Phys Condens Matter ; 29(46): 465901, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29064822

RESUMEN

Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

3.
Phys Rev Lett ; 104(17): 176803, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20482126

RESUMEN

We predict theoretically and show experimentally the occurrence of quantum confinement in hydrogenated nanocrystalline silicon. We prove that only valence states (positively charged carriers) are confined effectively within the nanograins. The emission associated to confined states is verified by photoluminescence experiments on nanocrystalline samples with controlled grain size. According to the present study, we propose nanocrystalline silicon as a promising material for oxygen-free optoelectronics, silicon-based memories and photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...