Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(10): 2207-2218, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36786208

RESUMEN

Electrospinning has become a well-established method for creating nanofibrous meshes for tissue-engineering applications. The incorporation of natural extracellular components, such as electrospun pure collagen nanofibers, has proven to be particularly challenging, as electrospun collagen nanofibers do not constitute native collagen fibers anymore. In this study, we show that this detrimental effect is not only limited to fluorinated solvents, as previously thought. Rat tail collagen was dissolved in acetic acid and ethanol and electrospun at various temperatures. Electrospun collagen mats were analyzed using circular dichroism, enzymatic digestion, SDS-PAGE, western blotting, and Raman spectroscopy and compared to heat-denaturated and electrospun collagen in HFIP. Our data suggest that even non-fluorinated electrospinning solvents, such as acid-based solvents, do not yield structurally intact fibers. Interestingly, neither epithelial cells nor fibroblasts displayed a different cellular response to electrospun collagen compared to collagen-coated polyurethane scaffolds in F-actin staining and metabolic analysis using fluorescent lifetime imaging. The disruption of the structural integrity of collagen might therefore be underestimated based on the cell-material interactions alone. These observations expose the larger than anticipated vulnerability of collagen in the electrospinning process. Based on these findings, the influence of the electrospinning process on the distinct biochemical properties of collagen should always be considered, when ECM-mimicking fibrous constructs are manufactured.


Asunto(s)
Colágeno , Ingeniería de Tejidos , Ratas , Animales , Solventes/química , Colágeno/química , Ingeniería de Tejidos/métodos , Poliuretanos , Células Epiteliales
2.
ACS Omega ; 7(44): 39772-39781, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385898

RESUMEN

Conventional synthesis routes for thermoplastic polyurethanes (TPUs) still require the use of isocyanates and tin-based catalysts, which pose considerable safety and environmental hazards. To reduce both the ecological footprint and human health dangers for nonwoven TPU scaffolds, it is key to establish a green synthesis route, which eliminates the use of these toxic compounds and results in biocompatible TPUs with facile processability. In this study, we developed high-molecular-weight nonisocyanate polyurethanes (NIPUs) through transurethanization of 1,6-hexanedicarbamate with polycarbonate diols (PCDLs). Various molecular weights of PCDL were employed to maximize the molecular weight of NIPUs and consequently facilitate their electrospinnability. The synthesized NIPUs were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. The highest achieved molecular weight (M w) was 58,600 g/mol. The NIPUs were consecutively electrospun into fibrous scaffolds with fiber diameters in the submicron range, as shown by scanning electron microscopy (SEM). To assess the suitability of electrospun NIPU mats as a possible biomimetic load-bearing pericardial substitute in cardiac tissue engineering, their cytotoxicity was investigated in vitro using primary human fibroblasts and a human epithelial cell line. The bare NIPU mats did not need further biofunctionalization to enhance cell adhesion, as it was not outperformed by collagen-functionalized NIPU mats and hence showed that the NIPU mats possess a great potential for use in biomimetic scaffolds.

3.
ACS Appl Mater Interfaces ; 14(27): 30455-30465, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35777738

RESUMEN

3D bioprinting is an emerging biofabrication strategy using bioinks, comprising cells and biocompatible materials, to produce functional tissue models. Despite progress in building increasingly complex objects, biological analyses in printed constructs remain challenging. Especially, methods that allow non-invasive and non-destructive evaluation of embedded cells are largely missing. Here, we implemented Raman imaging for molecular-sensitive investigations on bioprinted objects. Different aspects such as culture formats (2D, 3D-cast, and 3D-printed), cell types (endothelial cells and fibroblasts), and the selection of the biopolymer (alginate, alginate/nanofibrillated cellulose, alginate/gelatin) were considered and evaluated. Raman imaging allowed for marker-independent identification and localization of subcellular components against the surrounding biomaterial background. Furthermore, single-cell analysis of spectral signatures, performed by multivariate analysis, demonstrated discrimination between endothelial cells and fibroblasts and identified cellular features influenced by the bioprinting process. In summary, Raman imaging was successfully established to analyze cells in 3D culture in situ and evaluate them with regard to the localization of different cell types and their molecular phenotype as a valuable tool for quality control of bioprinted objects.


Asunto(s)
Bioimpresión , Tinta , Alginatos , Bioimpresión/métodos , Células Endoteliales , Hidrogeles/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...