Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Chem Biol ; 5(3): 209-215, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38456036

RESUMEN

PHD fingers are a type of chromatin reader that primarily recognize chromatin as a function of lysine methylation state. Dysregulated PHD fingers are implicated in various human diseases, including acute myeloid leukemia. Targeting PHD fingers with small molecules is considered challenging as their histone tail binding pockets are often shallow and surface-exposed. The KDM5A PHD1 finger regulates the catalytic activity of KDM5A, an epigenetic enzyme often misregulated in cancers. To identify ligands that disrupt the PHD1-histone peptide interaction, we conducted a high-throughput screen and validated hits by orthogonal methods. We further elucidated structure-activity relationships in two classes of compounds to identify features important for binding. Our investigation offers a starting point for further optimization of small molecule PHD1 ligands.

2.
mBio ; : e0179123, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014974

RESUMEN

IMPORTANCE: Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPSA antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance. Our work acts as a foundation for further development of molecules that safeguard the PhLOPSA antibiotics from Cfr.

3.
Curr Opin Struct Biol ; 83: 102707, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832177

RESUMEN

Histone methylation, one of the most common histone modifications, has fundamental roles in regulating chromatin-based processes. Jumonji histone lysine demethylases (JMJC KDMs) influence regulation of gene transcription through both their demethylation and chromatin scaffolding functions. It has recently been demonstrated that dysregulation of JMJC KDMs contributes to pathogenesis and progression of several diseases, including cancer. These observations have led to an increased interest in modulation of enzymes that regulate lysine methylation. Here, we highlight recent progress in understanding catalysis of JMJC KDMs. Specifically, we focus on recent research advances on elucidation of JMJC KDM substrate recognition and interactomes. We also highlight recently reported JMJC KDM inhibitors and describe their therapeutic potentials and challenges. Finally, we discuss alternative strategies to target these enzymes, which rely on targeting JMJC KDMs accessory domains as well as utilization of the targeted protein degradation strategy.


Asunto(s)
Histona Demetilasas , Histonas , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Catálisis , Cromatina
4.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37294077

RESUMEN

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , ARN Viral/genética , Exorribonucleasas
5.
Curr Opin Chem Biol ; 74: 102286, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948085

RESUMEN

Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.


Asunto(s)
Histonas , Lisina , Cromatina , Histonas/química , Lisina/metabolismo , Metilación , Unión Proteica
6.
ACS Chem Biol ; 18(9): 1915-1925, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33621062

RESUMEN

PHD reader domains are chromatin binding modules often responsible for the recruitment of large protein complexes that contain histone modifying enzymes, chromatin remodelers, and DNA repair machinery. A majority of PHD domains recognize N-terminal residues of histone H3 and are sensitive to the methylation state of Lys4 in histone H3 (H3K4). Histone demethylase KDM5A, an epigenetic eraser enzyme that contains three PHD domains, is often overexpressed in various cancers, and its demethylation activity is allosterically enhanced when its PHD1 domain is bound to the H3 tail. The allosteric regulatory function of PHD1 expands roles of reader domains, suggesting unique features of this chromatin interacting module. Our previous studies determined the H3 binding site of PHD1, although it remains unclear how the H3 tail interacts with the N-terminal residues of PHD1 and how PHD1 discriminates against H3 tails with varying degrees of H3K4 methylation. Here, we have determined the solution structure of apo and H3 bound PHD1. We observe conformational changes occurring in PHD1 in order to accommodate H3, which interestingly binds in a helical conformation. We also observe differential interactions of binding residues with differently methylated H3K4 peptides (me0, me1, me2, or me3), providing a rationale for PHD1's preference for lower methylation states of H3K4. We further assessed the contributions of various H3 interacting residues in the PHD1 domain to the binding of H3 peptides. The structural details of the H3 binding site could provide useful information to aid the development of allosteric small molecule modulators of KDM5A.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Metilación , Péptidos/química , Dominios Proteicos , Unión Proteica
7.
J Mol Biol ; 435(2): 167913, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36495919

RESUMEN

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. Through in vitro binding and kinetic studies using nucleosomes, we find that while the ARID domain is required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, the unstructured linker region between the ARID and PHD1 domains interacts with PHD1 and is necessary for nucleosome binding. Our data suggests a model in which the PHD1 domain inhibits DNA recognition by KDM5C. This inhibitory effect is relieved by the H3 tail, enabling recognition of flanking DNA on the nucleosome. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains break this regulation by enhancing DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering demethylase activity lower in the presence of flanking DNA. Our findings suggest a model by which specific XLID mutations could alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.


Asunto(s)
Cromatina , Histona Demetilasas , Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Histona Demetilasas/química , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Cinética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos
9.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194859, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985635

RESUMEN

Viruses use diverse tactics to hijack host cellular machineries to evade innate immune responses and maintain their life cycles. Being critical transcriptional regulators, human BET proteins are prominent targets of a growing number of viruses. The BET proteins associate with chromatin through the interaction of their bromodomains with acetylated histones, whereas the carboxy-terminal domains of these proteins contain docking sites for various human co-transcriptional regulators. The same docking sites however can be occupied by viral proteins that exploit the BET proteins to anchor their genome components to chromatin in the infected host cell. In this review we highlight the pathological functions of the BET proteins upon viral infection, focusing on the mechanisms underlying their direct interactions with viral proteins, such as the envelope protein from SARS-CoV-2.


Asunto(s)
COVID-19 , Histonas , Cromatina , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , SARS-CoV-2 , Factores de Transcripción/metabolismo , Proteínas Virales/genética
10.
J Med Chem ; 65(15): 10554-10566, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35866897

RESUMEN

We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context. Compound 2 induces differentiation of distinct myeloid leukemia cell lines including cells with mutated DNMT3A R882. To date, small molecules targeting DNMT3A are limited to competitive inhibitors of AdoMet or DNA and display extreme toxicity. Our work is the first to identify small molecules with a mechanism of inhibition involving the disruption of PPIs with DNMT3A. Ongoing optimization of compounds 1 and 2 provides a promising basis to induce myeloid differentiation and treatment of diseases that display aberrant PPIs with DNMT3A, such as acute myeloid leukemia.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Leucemia Mieloide Aguda , Diferenciación Celular , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación
11.
Cell Rep ; 40(3): 111088, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35839775

RESUMEN

Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Interferones , Ratones , Proteínas Nucleares , Factores de Transcripción , Proteínas Virales
12.
Chem Sci ; 13(22): 6599-6609, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35756531

RESUMEN

Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3-a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3-histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic 'groove' of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains.

13.
Nat Struct Mol Biol ; 29(2): 162-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165456

RESUMEN

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. However, the molecular basis for context-specificity has not been elucidated. Here we show that the second-generation oxazolidinone radezolid also induces stalling with a penultimate alanine, and we determine high-resolution cryo-EM structures of linezolid- and radezolid-stalled ribosome complexes to explain their mechanism of action. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling due to repositioning of the modified nucleotide. Together, our findings provide molecular understanding for the context-specificity of oxazolidinones.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Oxazolidinonas/química , Oxazolidinonas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Alanina/química , Sitios de Unión , Microscopía por Crioelectrón , Linezolid/química , Linezolid/farmacología , Modelos Moleculares , Peptidil Transferasas/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura
14.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35015630

RESUMEN

Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.


Antibiotics treat or prevent infections by killing bacteria or slowing down their growth. A large proportion of these drugs do this by disrupting an essential piece of cellular machinery called the ribosome which the bacteria need to make proteins. However, over the course of the treatment, some bacteria may gain genetic alterations that allow them to resist the effects of the antibiotic. Antibiotic resistance is a major threat to global health, and understanding how it emerges and spreads is an important area of research. Recent studies have discovered populations of resistant bacteria carrying a gene for a protein named chloramphenicol-florfenicol resistance, or Cfr for short. Cfr inserts a small modification in to the ribosome that prevents antibiotics from inhibiting the production of proteins, making them ineffective against the infection. To date, Cfr has been found to cause resistance to eight different classes of antibiotics. Identifying which mutations enhance its activity and protect bacteria is vital for designing strategies that fight antibiotic resistance. To investigate how the gene for Cfr could mutate and make bacteria more resistant, Tsai et al. performed a laboratory technique called directed evolution, a cyclic process which mimics natural selection. Genetic changes were randomly introduced in the gene for the Cfr protein and bacteria carrying these mutations were treated with tiamulin, an antibiotic rendered ineffective by the modification Cfr introduces into the ribosome. Bacteria that survived were then selected and had more mutations inserted. By repeating this process several times, Tsai et al. identified 'super' variants of the Cfr protein that lead to greater resistance. The experiments showed that these variants boosted resistance by increasing the proportion of ribosomes that contained the protective modification. This process was facilitated by mutations that enabled higher levels of Cfr protein to accumulate in the cell. In addition, the current study allowed, for the first time, direct visualization of how the Cfr modification disrupts the effect antibiotics have on the ribosome. These findings will make it easier for clinics to look out for bacteria that carry these 'super' resistant mutations. They could also help researchers design a new generation of antibiotics that can overcome resistance caused by the Cfr protein.


Asunto(s)
Evolución Molecular Dirigida/métodos , Farmacorresistencia Microbiana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferasas/genética , ARN Ribosómico/genética , Adenosina/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Escherichia coli/efectos de los fármacos , Metilación
15.
Methods Mol Biol ; 2298: 105-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085241

RESUMEN

The family of radical SAM RNA-methylating enzymes comprises a large group of proteins that contains only a few functionally characterized members. Several enzymes in this family have been implicated in the regulation of translation and antibiotic susceptibility, emphasizing their significance in bacterial physiology and their relevance to human health. While few characterized enzymes have been shown to modify diverse RNA substrates, highlighting potentially broad substrate scope within the family, many enzymes in this class have no known substrates. The precise knowledge of RNA substrates and modification sites for uncharacterized family members is important for unraveling their biological function. Here, we describe a strategy for substrate identification that takes advantage of mechanism-based cross-linking between the enzyme and its RNA substrates, which we named individual-nucleotide-resolution cross-linking and immunoprecipitation combined with mutational profiling with sequencing (miCLIP-MaPseq). Identification of the position of the modification site is achieved using thermostable group II intron reverse transcriptase (TGIRT), which introduces a mismatch at the site of the cross-link.


Asunto(s)
Mutación/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Inmunoprecipitación/métodos , Metilación , ADN Polimerasa Dirigida por ARN/genética
16.
ACS Chem Biol ; 16(1): 205-213, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33314922

RESUMEN

Understanding the ligand preferences of epigenetic reader domains enables identification of modification states of chromatin with which these domains associate and can yield insight into recruitment and catalysis of chromatin-acting complexes. However, thorough exploration of the ligand preferences of reader domains is hindered by the limitations of traditional protein-ligand binding assays. Here, we evaluate the binding preferences of the PHD1 domain of histone demethylase KDM5A using the protein interaction by SAMDI (PI-SAMDI) assay, which measures protein-ligand binding in a high-throughput and sensitive manner via binding-induced enhancement in the activity of a reporter enzyme, in combination with fluorescence polarization. The PI-SAMDI assay was validated by confirming its ability to accurately profile the relative binding affinity of a set of well-characterized histone 3 (H3) ligands of PHD1. The assay was then used to assess the affinity of PHD1 for 361 H3 mutant ligands, a select number of which were further characterized by fluorescence polarization. Together, these experiments revealed PHD1's tolerance for H3Q5 mutations, including an unexpected tolerance for aromatic residues in this position. Motivated by this finding, we further demonstrate a high-affinity interaction between PHD1 and recently identified Q5-serotonylated H3. This work yields interesting insights into permissible PHD1-H3 interactions and demonstrates the value of interfacing PI-SAMDI and fluorescence polarization in investigations of protein-ligand binding.


Asunto(s)
Histonas/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Polarización de Fluorescencia , Humanos , Ligandos
17.
Curr Opin Chem Biol ; 57: 105-113, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32758979

RESUMEN

Functional cross-talk between the catalytic and reader domains in chromatin-modifying enzymes and protein complexes enable coordinated regulation of chromatin modification status, and consequently impacts chromatin-associated processes. ZZ domains are a recently identified class of chromatin readers that recognize the N-terminal region of histone H3 to direct and regulate acetylation activity of several histone acetylation complexes. Cross-talk between chromatin readers sensitive to methylation, and catalytic domains of methyltransferases and demethylases impacts substrate specificity, catalytic activity, and propagation of chromatin marks. Recently described allosteric ligands that target domain communication highlight the potential of domain cross-talk in the development of the next-generation of chromatin-directed therapeutics.


Asunto(s)
Cromatina/metabolismo , Descubrimiento de Drogas , Epigénesis Genética/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Acetilación/efectos de los fármacos , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Animales , Cromatina/química , Descubrimiento de Drogas/métodos , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Ligandos , Metilación/efectos de los fármacos , Modelos Moleculares , Ubiquitina/química , Ubiquitina/metabolismo
18.
Methods Enzymol ; 639: 217-236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475402

RESUMEN

Histone demethylases catalyze the removal of methyl marks from histones, an activity associated with transcriptional regulation and DNA damage repair. As these processes are critical for normal physiology, deregulation of histone demethylases is disease causative, and their function and regulation are targets for therapeutic intervention. The larger of two histone demethylase families are Jumonji C (JmjC) demethylases. The members of the JmjC family share a conserved catalytic domain, and often contain non-catalytic domains that "read" the modification state of chromatin. By binding to specific histone modifications, reader domains assist in recruitment and promote accumulation of demethylases at their targets, as well as regulate their activity and substrate specificity. Here, we present protocols for the investigation of this functional coupling between reader and catalytic domains in human histone demethylase KDM5A. Although we use KDM5A and its PHD1 domain as our model system, the procedures presented herein can be applied for the biochemical characterization of other JmjC demethylases and chromatin readers.


Asunto(s)
Histona Demetilasas , Histonas , Cromatina/genética , Desmetilación , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Procesamiento Proteico-Postraduccional
19.
Nucleic Acids Res ; 48(5): 2723-2732, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31989172

RESUMEN

Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides' positions, a task that has previously been accomplished by X-ray crystallography. Here, we present a cryo-electron microscopy (cryo-EM) structure of the Escherichia coli 50S subunit at an average resolution of 2.2 Å as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for assessment of cryo-EM map quality. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Modelos Moleculares , Péptidos/metabolismo , Peptidil Transferasas/metabolismo , Reproducibilidad de los Resultados , Solventes , Electricidad Estática
20.
Biochemistry ; 59(5): 647-651, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31985200

RESUMEN

Human lysine demethylase KDM5A is a chromatin-modifying enzyme associated with transcriptional regulation, because of its ability to catalyze removal of methyl groups from methylated lysine 4 of histone H3 (H3K4me3). Amplification of KDM5A is observed in many cancers, including breast cancer, prostate cancer, hepatocellular carcinoma, lung cancer, and gastric cancer. In this study, we employed alanine scanning mutagenesis to investigate substrate recognition of KDM5A and identify the H3 tail residues necessary for KDM5A-catalyzed demethylation. Our data show that the H3Q5 residue is critical for substrate recognition by KDM5A. Our data also reveal that the protein-protein interactions between KDM5A and the histone H3 tail extend beyond the amino acids proximal to the substrate mark. Specifically, demethylation activity assays show that deletion or mutation of residues at positions 14-18 on the H3 tail results in an 8-fold increase in the KMapp, compared to wild-type 18mer peptide, suggesting that this distal epitope is important in histone engagement. Finally, we demonstrate that post-translational modifications on this distal epitope can modulate KDM5A-dependent demethylation. Our findings provide insights into H3K4-specific recognition by KDM5A, as well as how chromatin context can regulate KDM5A activity and H3K4 methylation status.


Asunto(s)
Histonas/metabolismo , Neoplasias/enzimología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Biocatálisis , Histonas/química , Humanos , Metilación , Proteína 2 de Unión a Retinoblastoma/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...