Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(16): e111133, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37431790

RESUMEN

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Asunto(s)
Senescencia Celular , Serotonina , Animales , Ratones , Serotonina/metabolismo , Senescencia Celular/fisiología , Envejecimiento/metabolismo , Muerte Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ratas Topo/metabolismo
2.
Commun Biol ; 5(1): 287, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354912

RESUMEN

Naked mole-rats (NMRs) have a very low spontaneous carcinogenesis rate, which has prompted studies on the responsible mechanisms to provide clues for human cancer prevention. However, it remains unknown whether and how NMR tissues respond to experimental carcinogenesis induction. Here, we show that NMRs exhibit extraordinary resistance against potent chemical carcinogenesis induction through a dampened inflammatory response. Although carcinogenic insults damaged skin cells of both NMRs and mice, NMR skin showed markedly lower immune cell infiltration. NMRs harbour loss-of-function mutations in RIPK3 and MLKL genes, which are essential for necroptosis, a type of necrotic cell death that activates strong inflammation. In mice, disruption of Ripk3 reduced immune cell infiltration and delayed carcinogenesis. Therefore, necroptosis deficiency may serve as a cancer resistance mechanism via attenuating the inflammatory response in NMRs. Our study sheds light on the importance of a dampened inflammatory response as a non-cell-autonomous cancer resistance mechanism in NMRs.


Asunto(s)
Ratas Topo , Necroptosis , Animales , Carcinogénesis , Inflamación , Ratones , Piel
3.
J Mol Endocrinol ; 66(4): 299-311, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33852425

RESUMEN

Naked mole-rats (Heterocephalus glaber) inhabit subterranean burrows in savannas and are, thus, unable to access free water. To identify their mechanism of osmoregulation in xeric environments, we molecularly cloned and analyzed the nuclear receptor subfamily 3 group C member 2 (NR3C2) gene encoding the mineralocorticoid receptor (MR), required for hormone-dependent regulation of genes contributing to body fluid homeostasis. Most vertebrates harbor a single MR homolog. In contrast, we discovered that MR is duplicated in naked mole-rats. The amino acid sequence of naked mole-rat MR1 is 90% identical to its mouse ortholog, and MR1 is abundantly expressed in the kidney and the nervous system. MR2 encodes a truncated protein lacking DNA- and ligand-binding domains of MR1 and is expressed in diverse tissues. Although MR2 did not directly transactivate gene expression, it increased corticosteroid-dependent transcriptional activity of MR1. Our results suggest that MR2 might function as a novel regulator of MR1 activity to fine-tune MR signaling in naked mole-rats.


Asunto(s)
Clonación Molecular , Ratas Topo/genética , Receptores de Mineralocorticoides/genética , Secuencia de Aminoácidos/genética , Animales , Regulación de la Expresión Génica/genética , Riñón/metabolismo , Ratones , Sistema Nervioso/metabolismo , Receptores de Mineralocorticoides/aislamiento & purificación
4.
Biochem Biophys Res Commun ; 456(3): 768-73, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25498500

RESUMEN

Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas/química , Exosomas/metabolismo , Neoplasias/metabolismo , Fosfatidiletanolaminas/análisis , Comunicación Celular , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...