Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38469909

RESUMEN

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.

2.
Phys Chem Chem Phys ; 24(3): 1779-1786, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985091

RESUMEN

The effect of the incident UV pump wavelength on the subsequent excited state dynamics, electronic relaxation, and ultimate dissociation of formaldehyde is studied using first principles simulation and Coulomb explosion imaging (CEI) experiments. Transitions in a vibronic progression in the à ← X̃ absorption band are systematically prepared using a tunable UV source which generates pulses centered at 304, 314, 329, and 337 nm. We find, both via ab initio simulation and experimental results, that the rate of excited state decay and subsequent dissociation displays a prominent dependence on which vibronic transition in the absorption band is prepared by the pump. Our simulations predict that nonadiabatic transition rates and dissociation yields will increase by a factor of >100 as the pump wavelength is decreased from 337 to 304 nm. The experimental results and theoretical simulations are in broad agreement and both indicate that the dissociation rate plateaus rapidly after ≈2 ps following an ultrafast sub-ps rise.

3.
J Chem Phys ; 154(14): 144305, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858156

RESUMEN

We have used the FERMI free-electron laser to perform time-resolved photoelectron imaging experiments on a complex group of resonances near 15.38 eV in the absorption spectrum of molecular nitrogen, N2, under jet-cooled conditions. The new data complement and extend the earlier work of Fushitani et al. [Opt. Express 27, 19702-19711 (2019)], who recorded time-resolved photoelectron spectra for this same group of resonances. Time-dependent oscillations are observed in both the photoelectron yields and the photoelectron angular distributions, providing insight into the interactions among the resonant intermediate states. In addition, for most states, we observe an exponential decay of the photoelectron yield that depends on the ionic final state. This observation can be rationalized by the different lifetimes for the intermediate states contributing to a particular ionization channel. Although there are nine resonances within the group, we show that by detecting individual photoelectron final states and their angular dependence, we can identify and differentiate quantum pathways within this complex system.

4.
Science ; 370(6520): 1072-1077, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33243885

RESUMEN

Since the discovery of roaming as an alternative molecular dissociation pathway in formaldehyde (H2CO), it has been indirectly observed in numerous molecules. The phenomenon describes a frustrated dissociation with fragments roaming at relatively large interatomic distances rather than following conventional transition-state dissociation; incipient radicals from the parent molecule self-react to form molecular products. Roaming has been identified spectroscopically through static product channel-resolved measurements, but not in real-time observations of the roaming fragment itself. Using time-resolved Coulomb explosion imaging (CEI), we directly imaged individual "roamers" on ultrafast time scales in the prototypical formaldehyde dissociation reaction. Using high-level first-principles simulations of all critical experimental steps, distinctive roaming signatures were identified. These were rendered observable by extracting rare stochastic events out of an overwhelming background using the highly sensitive CEI method.

5.
J Synchrotron Radiat ; 27(Pt 5): 1362-1365, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876612

RESUMEN

The pulse duration of soft X-ray free-electron laser (FEL) pulses of SACLA BL1 (0.2-0.3 nC per bunch, 0.5-0.8 MeV) were characterized by photoelectron sideband measurements. The intensity of the He 1 s-1 photoelectron sidebands generated by a near-infrared femtosecond laser was measured as a function of the time delay between the two pulses using an arrival time monitor. From the width of the cross-correlation trace thus derived, the FEL pulse duration was evaluated to be 28 ± 5 fs full width at half-maximum in the photon energy range between 40 eV and 120 eV.

6.
Phys Chem Chem Phys ; 19(5): 3550-3556, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28093589

RESUMEN

Selective bond breaking of CO2 in phase-locked ω-2ω two-color intense laser fields (λ = 800 nm and 400 nm, total field intensity I ∼ 1014 W cm-2) has been investigated by coincidence momentum imaging. The CO+ and O+ fragment ions produced by two-body Coulomb explosion, CO22+ → CO+ + O+, exhibit asymmetric distributions along the laser polarization direction, showing that one of the two equivalent C-O bonds is selectively broken by the laser fields. At a field intensity higher than 2 × 1014 W cm-2, the largest fragment asymmetry is observed when the relative phase ϕ between the ω and 2ω laser fields is ∼0 and π. On the other hand, an increase of the asymmetry and a shift of the phase providing the largest asymmetry are observed at lower field intensities. The selective bond breaking and its dependence on the laser field intensity are discussed in terms of a mechanism involving deformation of the potential energy surfaces and electron recollision in intense laser fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...