Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Article En | MEDLINE | ID: mdl-38643710

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Catechin , NF-kappa B , Programmed Cell Death 1 Receptor , T-Lymphocytes , Catechin/analogs & derivatives , Catechin/pharmacology , Animals , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Humans , Apoptosis/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Female , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Active Transport, Cell Nucleus/drug effects
2.
J Immunol ; 212(8): 1381-1391, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38416029

Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.


Leukemia , Receptors, Chimeric Antigen , Animals , Mice , CD8-Positive T-Lymphocytes , Granzymes , Leukemia/metabolism , Receptors, Chimeric Antigen/metabolism , Tumor Microenvironment , Cytotoxicity, Immunologic
3.
Front Allergy ; 4: 1207924, 2023.
Article En | MEDLINE | ID: mdl-37546176

Background: When exclusive breastfeeding is not possible, partially hydrolyzed formula (PHF) is often used as a starter formula for infants. Some children develop allergic symptoms, including anaphylaxis, after the first intake of cow protein. Therefore, the tolerability of PHF in infants with cow's milk allergy (CMA) is important information. Partially hydrolyzed whey formula (PHWF) is well characterized, but those containing both whey and casein are also available. We evaluated the characteristics of two whey and casein PHFs, PHF1 and PHF2, in vitro and ex vivo, and compared them with a PHWF, PHWF1. Methods: Residual antigenicity of ß-lactoglobulin (ß-LG) and casein in the formulas was measured using ELISA. The molecular weight profile was determined using high-pressure liquid chromatography. IgE reactivity and allergenic activity of the formulas were evaluated by ImmunoCAP inhibition assay and by basophil activation test using blood from patients with CMA, respectively. Results: All the participants (n = 10) had casein-specific IgE. The antigenicity of ß-LG in PHF1 was similar to that in PHWF1, but it was slightly higher than that in PHWF1 for casein. PHF1 had a higher IgE reactivity than PHWF1. However, PHF1 and PHWF1 had a similar ability to activate basophils. PHF2 had lower antigenicity of casein and ß-LG, IgE reactivity and basophil activation than PHWF1. Conclusion: These results suggest that the tolerability of PHF1 and PHF2 in patients with CMA is similar to and higher than that of PHWF1, respectively, and that the degree of IgE binding to PHFs does not necessarily correspond to basophil activation.

4.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Article En | MEDLINE | ID: mdl-37639774

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


AMP-Activated Protein Kinases , Histones , Humans , Histones/genetics , Down-Regulation , Mixed Function Oxygenases , Proto-Oncogene Proteins
5.
Front Immunol ; 14: 1173035, 2023.
Article En | MEDLINE | ID: mdl-37197667

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is an immune checkpoint expressed in regulatory T (Treg) cells and activated T lymphocytes. Despite its potential as a treatment strategy for melanoma, CTLA-4 inhibition has limited efficacy. Using data from The Cancer Genome Atlas (TCGA) melanoma database and another dataset, we found that decreased CTLA4 mRNA was associated with a poorer prognosis in metastatic melanoma. To investigate further, we measured blood CTLA4 mRNA in 273 whole-blood samples from an Australian cohort and found that it was lower in metastatic melanoma than in healthy controls and associated with worse patient survival. We confirmed these findings using Cox proportional hazards model analysis and another cohort from the US. Fractionated blood analysis revealed that Treg cells were responsible for the downregulated CTLA4 in metastatic melanoma patients, which was confirmed by further analysis of published data showing downregulated CTLA-4 surface protein expression in Treg cells of metastatic melanoma compared to healthy donors. Mechanistically, we found that secretomes from human metastatic melanoma cells downregulate CTLA4 mRNA at the post-transcriptional level through miR-155 while upregulating FOXP3 expression in human Treg cells. Functionally, we demonstrated that CTLA4 expression inhibits the proliferation and suppressive function of human Treg cells. Finally, miR-155 was found to be upregulated in Treg cells from metastatic melanoma patients compared to healthy donors. Our study provides new insights into the underlying mechanisms of reduced CTLA4 expression observed in melanoma patients, demonstrating that post-transcriptional silencing of CTLA4 by miRNA-155 in Treg cells may play a critical role. Since CTLA-4 expression is downregulated in non-responder melanoma patients to anti-PD-1 immunotherapy, targeting miRNA-155 or other factors involved in regulating CTLA4 expression in Treg cells without affecting T cells could be a potential strategy to improve the efficacy of immunotherapy in melanoma. Further research is needed to understand the molecular mechanisms regulating CTLA4 expression in Treg cells and identify potential therapeutic targets for enhancing immune-based therapies.


Melanoma , MicroRNAs , Neoplasms, Second Primary , Humans , T-Lymphocytes, Regulatory , CTLA-4 Antigen , Australia , Prognosis , MicroRNAs/metabolism
6.
Cancers (Basel) ; 15(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36831600

Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.

7.
Cancers (Basel) ; 14(20)2022 Oct 13.
Article En | MEDLINE | ID: mdl-36291794

Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.

8.
Nutrients ; 14(20)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36297041

Weighed food records together with an in-person interview approach constitute the most basic methods used to estimate energy and nutrient intakes in dietary surveys. In the background of the coronavirus disease-2019 pandemic, the need for non-face-to-face dietary surveys using information and communication technology (ICT) is increasing. We aimed to evaluate ICT-based dietary record surveys and identify factors that may enable this survey method to become more widely used in the future. We conducted a non-face-to-face survey of dietary records of 44 Japanese individuals, maintained by dietitians using dietary photography and video conferencing services. We conducted a focus group interview with the six dietitians who conducted that survey. Their opinions on the factors necessary to popularize ICT-based dietary survey method were analyzed. In the focus group interview, dietitians highlighted fewer restrictions on time and place as positive aspects. Negative aspects included insufficient skills to operate computers, difficulty in hearing, and understanding facial expressions using ICT. We identified three main factors for enabling widespread use of ICT-based dietary record survey: individual skill, device and technology, and social environmental factors. This suggests that a comprehensive approach is necessary for popularizing the use of ICT in dietary surveys.


COVID-19 , Nutritionists , Humans , Diet Records , Focus Groups , Japan , Technology
9.
Cells ; 11(16)2022 08 18.
Article En | MEDLINE | ID: mdl-36010641

The anti-inflammatory cytokine interleukin-37 (IL-37) plays a key role in inhibiting innate and adaptive immunity. Past results have shown that IL-37 is elevated in human Treg cells compared to other T cell subsets and contributes to enhancing the Treg transcription factor, forkhead box protein P3 (FOXP3). However, it is unknown if ectopic expression of IL-37 in non-Treg CD4+ T cells can lead to the development of Treg phenotype and function. In the present study, we used a PrimeFlow® RNA assay and confirmed elevated IL37 expression in human Treg cells. We then stably transfected the non-Treg CD4+ T cell leukemia cell line, E6 Jurkat cells, with IL37 and found significant induction of the Treg phenotype. These IL-37-expressing Jurkat cells had elevated CTLA-4 and FOXP3 and produced IL-10. In conjunction with the Treg phenotype, IL-37-expressing Jurkat cells suppressed T cell activation/proliferation, comparable to human primary Treg cells. The creation of this stable human Treg-like cell line has the potential to provide further assistance for in vitro studies of human Treg cells, as it is more convenient than the use of primary human Treg cells. Furthermore, it provides insights into Treg cell biology and function.


Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Humans , Interleukin-1/metabolism , Jurkat Cells , Phenotype
10.
Nat Commun ; 13(1): 3535, 2022 06 20.
Article En | MEDLINE | ID: mdl-35725568

Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.


Ephrin-B2 , Head and Neck Neoplasms , Receptor, EphB4 , Squamous Cell Carcinoma of Head and Neck , Animals , Ephrin-B2/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Mice , Receptor, EphB4/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment
11.
ACS Nano ; 16(4): 6349-6358, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35343675

PEGylated liposome is the cornerstone platform for modern drug delivery. Unfortunately, as exemplified by PEGylated liposomal doxorubicin (aka Doxil), altered doxorubicin pharmacokinetics causes off-target accumulation in the skin, including the palms and feet, leading to severe dose-limiting toxicity. In addition to Doxil, other nanoparticles and PEGylated liposomes exhibit significant deposition in the skin, but mechanisms of accumulation are poorly understood. Using ex vivo imaging and ex vivo confocal microscopy, we show that PEGylated liposomes in mice accumulate predominantly in the areas subject to mechanical stress/pressure. Blood vessels in foot skin appear to be especially leaky, exhibiting burst-like extravasations. Using high-resolution confocal microscopy and liposomes labeled with different dyes in the membrane and/or interior, two modes of extravasation were observed: (1) as intact liposomes; (2) as separated liposomal components. On the other hand, stable cross-linked iron oxide nanoworms extravasated only as intact nanoparticles. There was no colocalization between liposomes and exosomal marker CD81, excluding the role of exocytosis. Also, in situ perfusion of formalin-fixed foot skin with labeled liposomes revealed that the extravasation is mediated by passive, energy-independent diffusion and not by leukocyte "hitchhiking". These findings improve our understanding of extravasation pathways of nanocarriers in the areas relevant to skin pathologies and could lead to strategies to prevent and treat liposome-induced skin toxicities.


Doxorubicin , Liposomes , Mice , Animals , Liposomes/pharmacokinetics , Doxorubicin/therapeutic use , Polyethylene Glycols/pharmacokinetics , Endothelium
12.
Breast Cancer (Auckl) ; 16: 11782234221080553, 2022.
Article En | MEDLINE | ID: mdl-35340889

Background: Triple-negative breast cancer (TNBC) exhibits poor prognosis due to the lack of targets for hormonal or antibody-based therapies, thereby leading to limited success in the treatment of this cancer subtype. Poly (ADP-ribose) polymerase 1 (PARP1) is a critical factor for DNA repair, and using PARP inhibitor (PARPi) is one of the promising treatments for BRCA-mutated (BRCA mut) tumors where homologous recombination repair is impaired due to BRCA1 mutation. Carbon ion (C-ion) radiotherapy effectively induces DNA damages in cancer cells. Thus, the combination of C-ion radiation with PARPi would be an attractive treatment for BRCA mut TNBC, wherein DNA repair systems can be severely impaired on account of the BRCA mutation. Till date, the effectiveness of C-ion radiation with PARPi in BRCA mut TNBC cell killing remains unknown. Purpose: Triple-negative breast cancer cell lines carrying either wild type BRCA1, BRCA wt, (MDA-MB-231), or the BRCA1 mutation (HCC1937) were used, and the effectiveness of PARPi, olaparib, combined with C-ion beam or the conventional radiation, or X-ray, on TNBC cell killing were investigated. Methods: First, effective concentrations of olaparib for BRCA mut (HCC1937) cell killing were identified. Using these concentrations of olaparib, we then investigated their radio-sensitizing effects by examining the surviving fraction of MDA-MB-231 and HCC1937 upon X-ray or C-ion irradiation. In addition, the number of γH2AX (DSB marker) positive cells as well as their expression levels were determined by immunohistochemistry, and results were compared between X-ray irradiated or C-ion irradiated cells. Furthermore, PARP activities in these cells were also observed by performing immunohistochemistry staining for poly (ADP-ribose) polymer (marker for PARP activity), and their expression differences were determined. Results: Treatment of cells with 25 nM olaparib enhanced radio-sensitivity of X-ray irradiated HCC1937, whereas lower dose (5 nM) olaparib showed drastic effects on increasing radio-sensitivity of C-ion irradiated HCC1937. Similar effect was not observed in MDA-MB-231, not possessing the BRCA1 mutation. Results of immunohistochemistry showed that X-ray or C-ion irradiation induced similar number of γH2AX-positive HCC1937 cells, but these induction levels were higher in C-ion irradiated HCC1937 with increased PARP activity compared to that of X-ray irradiated HCC1937. Elevated induction of DSB in C-ion irradiated HCC937 may fully activate DSB repair pathways leading to downstream activation of PARP, subsequently enhancing the effectiveness of PARPi, olaparib, with lower doses of olaparib exerting noticeable effects in cell killing of C-ion irradiated HCC1937. Conclusions: From this study, we demonstrate that C-ion irradiation can exert significant DSB in BRCA mut TNBC, HCC1937, with high PARP activation. Thus, PARPi, olaparib, would be a promising candidate as a radio-sensitizer for BRCA mut TNBC treatment, especially for C-ion radiotherapy.

13.
Clin Transl Immunology ; 11(1): e1367, 2022.
Article En | MEDLINE | ID: mdl-35028137

OBJECTIVES: While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate-like T cells expressing a semi-invariant T-cell receptor restricted to the MHC class I-like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes. METHODS: In this prospective clinical study, we analysed the frequency and functional profile of circulating and tumor-infiltrating MAIT cells in human melanoma patients. Using flow cytometry, we compared these across metastatic sites and between ICI responders vs. non-responders as well as healthy donors. RESULTS: We identified tumor-infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients compared to healthy donors. However, circulating MAIT cell frequencies are restored by ICI treatment in responding patients, correlating with treatment responses, in which patients with high frequencies of MAIT cells exhibited significantly improved overall survival. CONCLUSION: Our results suggest that MAIT cells may be a potential predictive marker of responses to immunotherapies and provide rationale for testing MAIT cell-directed therapies in combination with current and next-generation ICIs.

14.
Dermatitis ; 33(4): 277-281, 2022.
Article En | MEDLINE | ID: mdl-33654018

BACKGROUND: Chronic inflammatory skin disorders, such as atopic dermatitis, have significant disease burden worldwide. Although efficacious, the adverse effect profile of topical corticosteroids limits long-term use. As an alternative, cannabinoids have been shown to have anti-inflammatory therapeutic effects. OBJECTIVE: The aim of this study was to assess the effects of a topical cannabinoid product using dermatitis mouse model. METHODS: Thirty-five mice were randomized into treatment groups. 12- O -tetradecanoylphorbol-13-acetate was used as an irritant on 1 ear with the contralateral ear serving as a control. Ear edema was calipered. The test product containing 0.9% cannabidiol and palmitoylethanolamide was compared with a potent topical corticosteroid. RESULTS: Treatment with topical cannabinoid formulation reduced ear edema by 51.27% at 24 hours' and 65.69% at 48 hours' postapplication. Alternatively, mometasone reduced ear edema by 89.82% at 24 hours and 98.25% at 48 hours. Natural reduction (control) in ear edema was 26.32% at 24 hours and 44.21% at 48 hours. Both test groups resulted in significantly decreased edema when compared with baseline ( P < 0.05), as well as compared with the negative control group ( P < 0.05). CONCLUSIONS: Significant reduction in ear edema, a marker for localized cutaneous inflammation, could be attributed to anti-inflammatory properties of cannabinoids. Although effects were less robust than topical corticosteroid use, cannabinoid formulations have therapeutic promise for dermatitis.


Cannabidiol , Dermatitis , Acetates/adverse effects , Amides , Animals , Anti-Inflammatory Agents/adverse effects , Cannabidiol/adverse effects , Dermatitis/drug therapy , Edema/chemically induced , Edema/drug therapy , Ethanolamines , Mice , Palmitic Acids , Tetradecanoylphorbol Acetate/adverse effects
15.
J Invest Dermatol ; 142(2): 390-401, 2022 02.
Article En | MEDLINE | ID: mdl-34293351

Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.


Alcohol Oxidoreductases/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Psoriasis/drug therapy , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , HaCaT Cells , Humans , Imiquimod/immunology , Keratinocytes/drug effects , Keratinocytes/immunology , Keratinocytes/pathology , Mice , Mice, Transgenic , Psoriasis/genetics , Psoriasis/immunology , Psoriasis/pathology , Transcriptional Activation/drug effects , Transcriptional Activation/immunology
16.
J Invest Dermatol ; 142(7): 1912-1922.e7, 2022 07.
Article En | MEDLINE | ID: mdl-34942200

Uveal melanoma (UM) is a subtype of melanoma. Although they share a melanocytic origin with cutaneous melanoma (CM), patients with UM have few treatment options. BCL2 homologous 3 mimetics are small-molecule drugs that mimic proapoptotic BCL2 family members. We compared BCL2 family member expression between UM and CM using immunoblot and The Cancer Genome Atlas transcriptomic analysis. UM has a unique signature of low BFL1 and high PUMA proteins compared with CM and 30 other cancer types, making them an attractive candidate for BCL2 homologous 3 protein mimetics. We tested the efficacy of a BCL2 inhibitor and MCL1 inhibitor (MCL1i) in UM, with viability assays, live-cell imaging, sphere assays, and mouse xenograft models. UM had a higher sensitivity to MCL1i than CM. Overexpression of BFL1 or knockdown of PUMA made the UM more resistant to MCL1i. In contrast, MAPK/extracellular signal‒regulated kinase inhibitor treatment in CM made them more sensitive to MCL1i. However, MCL1i-alone treatment was not very effective to reduce the UM initiating cells; to overcome this, we employed a combination of MCL1i with BCL2 inhibitor that synergistically inhibited UM initiating cell's capacity to expand. Overall, we identify a distinct expression profile of BCL2 family members for UM that makes them susceptible to BCL2 homologous 3 mimetics.


Antineoplastic Agents , Melanoma , Skin Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Melanoma/drug therapy , Melanoma/genetics , Mice , Proto-Oncogene Proteins c-bcl-2 , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Uveal Neoplasms , Melanoma, Cutaneous Malignant
17.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34832863

Over the last decade, therapies targeting immune checkpoints, such as programmed death-1 (PD-1), have revolutionized the field of cancer immunotherapy. However, low response rates and immune-related adverse events remain a major concern. Here, we report that epigallocatechin gallate (EGCG), the most abundant catechin in green tea, inhibits melanoma growth by modulating an immune response against tumors. In vitro experiments revealed that EGCG treatment inhibited interferon-gamma (IFN-γ)-induced PD-L1 and PD-L2 expression and JAK-STAT signaling. We confirmed that this effect was driven by inhibiting STAT1 gene expression and STAT1 phosphorylation, thereby downregulating the PD-L1/PD-L2 transcriptional regulator IRF1 in both human and mouse melanoma cells. Animal studies revealed that the in vivo tumor-inhibitory effect of EGCG was through CD8+ T cells and that the inhibitory effect of EGCG was comparable to anti-PD-1 therapy. However, their mechanisms of action were different. Dissimilar to anti-PD-1 treatment that blocks PD-1/PD-L1 interaction, EGCG inhibited JAK/STAT signaling and PD-L1 expression in tumor cells, leading to the re-activation of T cells. In summary, we demonstrate that EGCG enhances anti-tumor immune responses by inhibiting JAK-STAT signaling in melanoma. EGCG could be used as an alternative treatment strategy to target the PD-L1/PD-L2-PD-1 axis in cancers.

18.
Stem Cell Reports ; 16(10): 2503-2519, 2021 10 12.
Article En | MEDLINE | ID: mdl-34559999

We here demonstrate that microsatellite (MS) alterations are elevated in both mouse and human induced pluripotent stem cells (iPSCs), but importantly we have now identified a type of human iPSC in which these alterations are considerably reduced. We aimed in our present analyses to profile the InDels in iPSC/ntESC genomes, especially in MS regions. To detect somatic de novo mutations in particular, we generated 13 independent reprogramed stem cell lines (11 iPSC and 2 ntESC lines) from an identical parent somatic cell fraction of a C57BL/6 mouse. By using this cell set with an identical genetic background, we could comprehensively detect clone-specific alterations and, importantly, experimentally validate them. The effectiveness of employing sister clones for detecting somatic de novo mutations was thereby demonstrated. We then successfully applied this approach to human iPSCs. Our results require further careful genomic analysis but make an important inroad into solving the issue of genome abnormalities in iPSCs.


Genetic Profile , INDEL Mutation , Induced Pluripotent Stem Cells/metabolism , Microsatellite Repeats , Animals , Cells, Cultured , Cellular Reprogramming , Cellular Reprogramming Techniques/methods , Humans , Mice , Mice, Inbred C57BL , Whole Genome Sequencing
19.
Mol Cancer Ther ; 20(10): 2049-2060, 2021 10.
Article En | MEDLINE | ID: mdl-34376578

There is a clear need to identify targetable drivers of resistance and potential biomarkers for salvage therapy for patients with melanoma refractory to the combination of BRAF and MEK inhibition. In this study, we performed whole-exome sequencing on BRAF-V600E-mutant melanoma patient tumors refractory to the combination of BRAF/MEK inhibition and identified acquired oncogenic mutations in NRAS and loss of the tumor suppressor gene CDKN2A We hypothesized the acquired resistance mechanisms to BRAF/MEK inhibition were reactivation of the MAPK pathway and activation of the cell-cycle pathway, which can both be targeted pharmacologically with the combination of a MEK inhibitor (trametinib) and a CDK4/6 inhibitor (palbociclib). In vivo, we found that combination of CDK4/6 and MEK inhibition significantly decreased tumor growth in two BRAF/MEK inhibitor-resistant patient-derived xenograft models. In vitro, we observed that the combination of CDK4/6 and MEK inhibition resulted in synergy and significantly reduced cellular growth, promoted cell-cycle arrest, and effectively inhibited downstream signaling of MAPK and cell-cycle pathways in BRAF inhibitor-resistant cell lines. Knockdown of CDKN2A in BRAF inhibitor-resistant cells increased sensitivity to CDK4/6 inhibition alone and in combination with MEK inhibition. A key implication of our study is that the combination of CDK4/6 and MEK inhibitors overcomes acquired resistance to BRAF/MEK inhibitors, and loss of CDKN2A may represent a biomarker of response to the combination. Inhibition of the cell-cycle and MAPK pathway represents a promising strategy for patients with metastatic melanoma who are refractory to BRAF/MEK inhibitor therapy.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , MAP Kinase Kinase 1/antagonists & inhibitors , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Aminopyridines/administration & dosage , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , Piperazines/administration & dosage , Pyridines/administration & dosage , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Pyrroles/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article En | MEDLINE | ID: mdl-33649199

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Melanoma, Experimental/immunology , Myeloid-Derived Suppressor Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neoplasm Proteins/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neoplasm Proteins/genetics , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
...