Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 223(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36454671

RESUMEN

Supergenes are sets of genes and genetic elements that are inherited like a single gene and control complex adaptive traits, but their functional roles and units are poorly understood. In Papilio polytes, female-limited Batesian mimicry is thought to be regulated by a ∼130 kb inversion region (highly diversified region: HDR) containing 3 genes, UXT, U3X, and doublesex (dsx) which switches non-mimetic and mimetic types. To determine the functional unit, we here performed electroporation-mediated RNAi analyses (and further Crispr/Cas9 for UXT) of genes within and flanking the HDR in pupal hindwings. We first clarified that non-mimetic dsx-h had a function to form the non-mimetic trait in female and only dsx-H isoform 3 had an important function in the formation of mimetic traits. Next, we found that UXT was involved in making mimetic-type pale-yellow spots and adjacent gene sir2 in making red spots in hindwings, both of which refine more elaborate mimicry. Furthermore, downstream gene networks of dsx, U3X, and UXT screened by RNA sequencing showed that U3X upregulated dsx-H expression and repressed UXT expression. These findings demonstrate that a set of multiple genes, not only inside but also flanking HDR, can function as supergene members, which extends the definition of supergene unit than we considered before. Also, our results indicate that dsx functions as the switching gene and some other genes such as UXT and sir2 within the supergene unit work as the modifier gene.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Femenino , Mimetismo Biológico/genética , Mariposas Diurnas/genética , Fenotipo , Redes Reguladoras de Genes , Interferencia de ARN
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694751

RESUMEN

It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related Papilio butterflies, Papilio memnon and Papilio polytes, is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the doublesex (dsx) gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: P. polytes has an inversion, but P. memnon does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two Papilio species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that dsx and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further Papilio species suggests three scenarios for the evolution of the mimicry supergene between the two Papilio species. The structural features revealed in the Papilio mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas , Animales , Mimetismo Biológico/genética , Mariposas Diurnas/genética , Inversión Cromosómica , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Alas de Animales
3.
Front Insect Sci ; 2: 929518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468762

RESUMEN

Papilio butterflies are known to possess female-limited Batesian mimicry polymorphisms. In Papilio memnon, females have mimetic and non-mimetic forms, whereas males are monomorphic and non-mimetic. Mimetic females are characterized by color patterns and tails in the hindwing and yellow abdomens. Recently, an analysis of whole-genome sequences has shown that an approximately 160 kb region of chromosome 25 is responsible for mimicry and has high diversity between mimetic (A) and non-mimetic (a) alleles (highly diversified region: HDR). The HDR includes three genes, UXT, doublesex (dsx), and Nach-like, but the functions of these genes are unknown. Here, we investigated the function of dsx, a gene involved in sexual differentiation, which is expected to be functionally important for hindwing and abdominal mimetic traits in P. memnon. Expression analysis by reverse transcription quantitative PCR (RT-qPCR) and RNA sequencing showed that mimetic dsx (dsx-A) was highly expressed in the hindwings in the early pupal stage. In the abdomen, both dsx-A and dsx-a were highly expressed during the early pupal stage. When dsx was knocked down using small interfering RNAs (siRNAs) designed in the common region of dsx-A and dsx-a, a male-like pattern appeared on the hindwings of mimetic and non-mimetic females. Similarly, when dsx was knocked down in the abdomen, the yellow scales characteristic of mimetic females changed to black. Furthermore, when dsx-a was specifically knocked down, the color pattern of the hindwings changed, as in the case of dsx knockdown in non-mimetic females but not mimetic females. These results suggest that dsx-a is involved in color pattern formation on the hindwings of non-mimetic females, whereas dsx-A is involved in hindwing and abdominal mimetic traits. dsx was involved in abdominal and hindwing mimetic traits, but dsx expression patterns in the hindwing and abdomen were different, suggesting that different regulatory mechanisms may exist. Our study is the first to show that the same gene (dsx) regulates both the hindwing and abdominal mimetic traits. This is the first functional analysis of abdominal mimicry in butterflies.

4.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523992

RESUMEN

In a Batesian mimic butterfly Papilio polytes, mimetic females resemble an unpalatable model, Pachliopta aristolochiae, but exhibit a different color pattern from nonmimetic females and males. In particular, the pale-yellow region on hind wings, which correspondingly sends important putative signals for mimicry and mate preference, is different in shape and chemical features between nonmimetic and mimetic morphs. Recently, we found that mimetic-type doublesex [dsx (H)] causes mimetic traits; however, the control of dimorphic pale-yellow colors remains unclear. Here, we revealed that dsx (H) switched the pale-yellow colors from UV-excited fluorescent type (nonmimetic) to UV-reflecting type (mimetic), by repressing the papiliochrome II synthesis genes and nanostructural changes in wing scales. Photoreceptor reactivities showed that some birds and butterflies could effectively recognize mimetic and nonmimetic pale-yellow colors, suggesting that a genetic switch in the UV response of pale-yellow colors may play essential roles in establishing the dimorphic female-limited Batesian mimicry.

5.
Commun Biol ; 4(1): 88, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469125

RESUMEN

Body elongation is a general feature of development. Postembryonically, the body needs to be framed and protected by extracellular materials, such as the skeleton, the skin and the shell, which have greater strength than cells. Thus, body elongation after embryogenesis must be reconciled with those rigid extracellular materials. Here we show that the exoskeleton (cuticle) coating the Drosophila larval body has a mechanical property to expand less efficiently along the body circumference than along the anteroposterior axis. This "corset" property of the cuticle directs a change in body shape during body growth from a relatively round shape to an elongated one. Furthermore, the corset property depends on the functions of Cuticular protein 11 A and Tubby, protein components of a sub-surface layer of the larval cuticle. Thus, constructing a stretchable cuticle and supplying it with components that confer circumferential stiffness is the fly's strategy for executing postembryonic body elongation.


Asunto(s)
Tamaño Corporal/fisiología , Drosophila/embriología , Matriz Extracelular/fisiología , Exoesqueleto/metabolismo , Exoesqueleto/fisiología , Animales , Desarrollo Embrionario , Matriz Extracelular/metabolismo , Larva/metabolismo
6.
Sci Rep ; 10(1): 21333, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288816

RESUMEN

Dimorphic female-limited Batesian mimicry in the swallowtail butterfly Papilio polytes is regulated by the supergene locus H, harbouring the mimetic (H) and non-mimetic (h) doublesex (dsx) gene. In the present study, we demonstrated that dsx-H negatively affects the number of eggs laid, hatching rate, larval survival rate, and adult lifespan. When crossed with hh males, the number of eggs laid of mimetic females (genotype HH) was lower than that of non-mimetic females (hh). Moreover, hh and Hh females laid fewer eggs when crossed with HH males. The hatching and larval survival rates were lower when both female and male parents harboured dsx-H. The adult lifespan of HH females was shorter than that of hh females, while it was similar in males regardless of the genotype. These findings suggest the presence of a cost-benefit balance of Batesian mimicry, which is evolved to avoid predation but is accompanied by physiological deficits, in this species.


Asunto(s)
Mimetismo Biológico , Pleiotropía Genética/fisiología , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/fisiología , Evolución Molecular , Femenino , Pleiotropía Genética/genética , Genotipo , Larva/metabolismo , Masculino , Polimorfismo Genético/genética , Alas de Animales/metabolismo , Alas de Animales/fisiología
7.
iScience ; 23(7): 101315, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32650115

RESUMEN

In most Papilio species, a younger larva mimics bird droppings but changes its pattern to match host plant colors in its final instar. This change is determined by juvenile hormone (JH) during the JH-sensitive period (JHSP) early in the fourth instar. Recently, we found that homeobox genes control the pre-pattern formation specifically during JHSP, but the molecular mechanisms underlying final patterning and pigmentation at molt are unknown. By knockdown of Delta and Notch in Papilio xuthus larvae, we here showed that these genes define the edge and pigmentation area in final patterns, during and even after JHSP, suggesting that they bridge the JHSP and molt. Knockdown of Delta in Papilio machaon led to similar phenotypic changes, and knockdown of Notch caused pigmentation loss in twin spots of the silkworm Multilunar (L) mutant. Our findings suggest the importance of the Notch signaling pathway in caterpillars' adaptive evolution of color pattern formation.

8.
Sci Rep ; 10(1): 8963, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488018

RESUMEN

Telomere length maintenance is essential for most eukaryotes to ensure genome stability and integrity. A non-long terminal repeat (LTR) retrotransposon, SART1Bm, targets telomeric repeats (TTAGG)n of the silkworm Bombyx mori and is presumably involved in telomere length maintenance. However, how many telomeric repeats are required for its retrotransposition and how reverse transcription is initiated at the target site are not well understood. Here, using an ex vivo and trans-in vivo recombinant baculovirus retrotransposition system, we demonstrated that SART1Bm requires at least three (TTAGG) telomeric repeats and a longer poly(A) tail for its accurate retrotransposition. We found that SART1Bm retrotransposed only in the third (TTAGG) tract of three repeats and that the A residue of the (TTAGG) unit was essential for its retrotransposition. Interestingly, SART1Bm also retrotransposed into telomeric repeats of other species, such as human (TTAGGG)n repeats, albeit with low retrotransposition efficiency. We further showed that the reverse transcription of SART1Bm occurred inaccurately at the internal site of the 3' untranslated region (UTR) when using a short poly(A) tail but at the accurate site when using a longer poly(A) tail. These findings promote our understanding of the general mechanisms of site-specific retrotransposition and aid the development of a site-specific gene knock-in tool.


Asunto(s)
Clonación Molecular/métodos , Retroelementos/genética , Homeostasis del Telómero/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Bombyx/genética , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos/fisiología , Telómero/metabolismo , Homeostasis del Telómero/fisiología , Secuencias Repetidas Terminales/genética , Secuencias Repetidas Terminales/fisiología
9.
RNA ; 25(11): 1432-1438, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31434792

RESUMEN

R2 is a long interspersed element (LINE) found in a specific sequence of the 28S rDNA among a wide variety of animals. Recently, we observed that R2Ol isolated from medaka fish, Oryzias latipes, retrotransposes sequence specifically into the target sequence of zebrafish. Because the 28S target and flanking regions are widely conserved among vertebrates, we examined whether R2Ol can also integrate in a sequence-specific manner in human cells. Using adenovirus-mediated expression of R2Ol constructs, we confirmed an accurate insertion of R2Ol into the 28S target of human 293T cells. However, the R2Ol mutant devoid of endonuclease (EN) activity showed no retrotransposition ability, suggesting that the sequence-specific integration of R2Ol into 28S rDNA occurs via the cleavage activity of EN. By introducing both R2Ol helper virus and donor plasmid in human cells, we succeeded in retrotransposing an exogenous EGFP gene into the 28S target site by the trans-complementation system, which enabled simplification of specific gene knock-in in a time-efficient manner. We believe that R2Ol may provide an alternative targeted gene knock-in method for practical applications such as gene therapy in future.


Asunto(s)
ADN Ribosómico/genética , Elementos de Nucleótido Esparcido Largo , ARN Ribosómico 28S/genética , Retroelementos , Adenoviridae/genética , Técnicas de Sustitución del Gen , Prueba de Complementación Genética , Células HEK293 , Virus Helper/genética , Humanos , Plásmidos
10.
Commun Biol ; 2: 257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312726

RESUMEN

The swallowtail butterfly Papilio polytes is sexually dimorphic and exhibits female-limited Batesian mimicry. This species also has two female forms, a non-mimetic form with male-like wing patterns, and a mimetic form resembling an unpalatable model, Pachliopta aristolochiae. The mimicry locus H constitutes a dimorphic Mendelian 'supergene', including a transcription factor gene doublesex (dsx). However, how the mimetic-type dsx (dsx-H) orchestrates the downstream gene network and causes the mimetic traits remains unclear. Here we performed RNA-seq-based gene screening and found that Wnt1 and Wnt6 are up-regulated by dsx-H during the early pupal stage and are involved in the red/white pigmentation and patterning of mimetic female wings. In contrast, a homeobox gene abdominal-A is repressed by dsx-H and involved in the non-mimetic colouration pattern. These findings suggest that dual regulation by dsx-H, induction of mimetic gene networks and repression of non-mimetic gene networks, is essential for the switch from non-mimetic to mimetic pattern in mimetic female wings.


Asunto(s)
Mariposas Diurnas/genética , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Alas de Animales/fisiología , Animales , Mimetismo Biológico/genética , Femenino , Regulación de la Expresión Génica , Fenotipo , Pigmentación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Caracteres Sexuales , Transcriptoma , Proteína Wnt1/metabolismo
11.
Mob DNA ; 10: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139267

RESUMEN

BACKGROUND: Although most of long interspersed elements (LINEs), one class of non-LTR-retrotransposons, are integrated into the host genome randomely, some elements are retrotransposed into the specific sequences of the genomic regions, such as rRNA gene (rDNA) clusters, telomeric repeats and other repetitive sequenes. Most of the sequence-specific LINEs have been reported mainly among invertebrate species and shown to retrotranspose into the specific sequences in vivo and in vitro systems. Recenlty, 28S rDNA-specific LINE R2 elements are shown to be distributed among widespread vertebrate species, but the sequence-specific retrotransposition of R2 has never been demonstrated in vertebrates. RESULTS: Here we cloned a full length unit of R2 from medaka fish Oryzias latipes, named R2Ol, and engineered it to a targeted gene integration tool in zebrafish. By injecting R2Ol-encoding mRNA into zebrafish embryos, R2Ol retrotransposed precisely into the target site at high efficiency (98%) and was transmitted to the next generation at high frequency (50%). We also generated transgenic zebrafish carrying the enhanced green fluorescent protein (EGFP) reporter gene in 28S rDNA target by the R2Ol retrotransposition system. CONCLUSIONS: Sequence-specific LINE retrotransposes into the precise sequence using target primed reverse transcription (TPRT), possibly providing an alternative and effective targeted gene knockin method in vertebrates.

12.
Sci Adv ; 4(4): eaao5416, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29675466

RESUMEN

Batesian mimicry protects animals from predators when mimics resemble distasteful models. The female-limited Batesian mimicry in Papilio butterflies is controlled by a supergene locus switching mimetic and nonmimetic forms. In Papilio polytes, recent studies revealed that a highly diversified region (HDR) containing doublesex (dsx-HDR) constitutes the supergene with dimorphic alleles and is likely maintained by a chromosomal inversion. In the closely related Papilio memnon, which exhibits a similar mimicry polymorphism, we performed whole-genome sequence analyses in 11 butterflies, which revealed a nearly identical dsx-HDR containing three genes (dsx, Nach-like, and UXT) with dimorphic sequences strictly associated with the mimetic/nonmimetic phenotypes. In addition, expression of these genes, except that of Nach-like in female hind wings, showed differences correlated with phenotype. The dimorphic dsx-HDR in P. memnon is maintained without a chromosomal inversion, suggesting that a separate mechanism causes and maintains allelic divergence in these genes. More abundant accumulation of transposable elements and repetitive sequences in the dsx-HDR than in other genomic regions may contribute to the suppression of chromosomal recombination. Gene trees for Dsx, Nach-like, and UXT indicated that mimetic alleles evolved independently in the two Papilio species. These results suggest that the genomic region involving the above three genes has repeatedly diverged so that two allelic sequences of this region function as developmental switches for mimicry polymorphism in the two Papilio species. The supergene structures revealed here suggest that independent evolutionary processes with different genetic mechanisms have led to parallel evolution of similar female-limited polymorphisms underlying Batesian mimicry in Papilio butterflies.


Asunto(s)
Mimetismo Biológico/genética , Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Evolución Molecular , Familia de Multigenes , Alelos , Animales , Inversión Cromosómica , Expresión Génica , Variación Genética , Fenotipo , Filogenia , Carácter Cuantitativo Heredable , Secuenciación Completa del Genoma
13.
BMC Evol Biol ; 18(1): 8, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370752

RESUMEN

BACKGROUND: Antennae are multi-segmented appendages and main odor-sensing organs in insects. In Lepidoptera (moths and butterflies), antennal morphologies have diversified according to their ecological requirements. While diurnal butterflies have simple, rod-shaped antennae, nocturnal moths have antennae with protrusions or lateral branches on each antennal segment for high-sensitive pheromone detection. A previous study on the Bombyx mori (silk moth) antenna, forming two lateral branches per segment, during metamorphosis has revealed the dramatic change in expression of antennal patterning genes to segmentally reiterated, branch-associated pattern and abundant proliferation of cells contributing almost all the dorsal half of the lateral branch. Thus, localized cell proliferation possibly controlled by the branch-associated expression of antennal patterning genes is implicated in lateral branch formation. Yet, actual gene function in lateral branch formation in Bombyx mori and evolutionary mechanism of various antennal morphologies in Lepidoptera remain elusive. RESULTS: We investigated the function of several genes and signaling specifically in lateral branch formation in Bombyx mori by the electroporation-mediated incorporation of siRNAs or morpholino oligomers. Knock down of aristaless, a homeobox gene expressed specifically in the region of abundant cell proliferation within each antennal segment, during metamorphosis resulted in missing or substantial shortening of lateral branches, indicating its importance for lateral branch formation. aristaless expression during metamorphosis was lost by knock down of Distal-less and WNT signaling but derepressed by knock down of Notch signaling, suggesting the strict determination of the aristaless expression domain within each antennal segment by the combinatorial action of them. In addition, analyses of pupal aristaless expression in antennae with various morphologies of several lepidopteran species revealed that the aristaless expression pattern has a striking correlation with antennal shapes, whereas the segmentally reiterated expression pattern was observed irrespective of antennal morphologies. CONCLUSIONS: Our results presented here indicate the significance of aristaless function in lateral branch formation in B. mori and imply that the diversification in the aristaless expression pattern within each antennal segment during metamorphosis is one of the significant determinants of antennal morphologies. According to these findings, we propose a mechanism underlying development and evolution of lepidopteran antennae with various morphologies.


Asunto(s)
Antenas de Artrópodos/anatomía & histología , Evolución Biológica , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/embriología , Genes Homeobox , Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/embriología , Animales , Tipificación del Cuerpo/genética , Bombyx/anatomía & histología , Bombyx/genética , Mariposas Diurnas/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Metamorfosis Biológica/genética , Mariposas Nocturnas/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Proteínas Wnt/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(31): 8336-8341, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716921

RESUMEN

A stripe pattern is an aposematic or camouflage coloration often observed among various caterpillars. However, how this ecologically important pattern is formed is largely unknown. The silkworm dominant mutant Zebra (Ze) has a black stripe in the anterior margin of each dorsal segment. Here, fine linkage mapping of 3,135 larvae revealed a 63-kbp region responsible for the Ze locus, which contained three candidate genes, including the Toll ligand gene spätzle3 (spz-3). Both electroporation-mediated ectopic expression and RNAi analyses showed that, among candidate genes, only processed spz-3 induced melanin pigmentation and that Toll-8 was the candidate receptor gene of spz-3 This Toll ligand/receptor set is also involved in melanization of other mutant Striped (pS ), which has broader stripes. Additional knockdown of 5 other spz family and 10 Toll-related genes caused no drastic change in the pigmentation of either mutant, suggesting that only spz-3/Toll-8 is mainly involved in the melanization process rather than pattern formation. The downstream pigmentation gene yellow was specifically up-regulated in the striped region of the Ze mutant, but spz-3 showed no such region-specific expression. Toll signaling pathways are known to be involved in innate immunity, dorsoventral axis formation, and neurotrophic functions. This study provides direct evidence that a Toll signaling pathway is co-opted to control the melanization process and adaptive striped pattern formation in caterpillars.


Asunto(s)
Bombyx/embriología , Bombyx/genética , Proteínas de Insectos/genética , Melaninas/biosíntesis , Pigmentación de la Piel/genética , Receptor Toll-Like 8/genética , Secuencia de Aminoácidos/genética , Animales , Mapeo Cromosómico , Larva/metabolismo , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética
16.
PLoS Genet ; 13(1): e1006548, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28076349

RESUMEN

Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.


Asunto(s)
Tamaño Corporal/genética , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metamorfosis Biológica/genética , Animales , Proteínas Portadoras/metabolismo , Quitina/genética , Quitina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo
17.
Sci Rep ; 6: 34782, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708422

RESUMEN

The female-limited Batesian mimicry polymorphism in Papilio butterflies is an intriguing system for investigating the mechanism of maintenance of genetic polymorphisms. In Papilio polytes, an autosomal region encompassing the sex-determinant gene doublesex controls female-limited mimicry polymorphism. In the closely related species P. memnon, which also exhibits female-limited Batesian mimicry polymorphism, we identified two allelic sequences of the doublesex gene that corresponded exactly with the mimetic and non-mimetic female phenotypes. Thus, the genetic basis of the mimicry polymorphism in P. memnon is similar to that in P. polytes. However, the mimetic and non-mimetic alleles of the two species were not identical, and the divergence of alleles occurred independently in P. memnon and P. polytes. Different mutation-selection processes may have resulted in the convergent patterns of mimicry polymorphism in these Papilio butterflies.


Asunto(s)
Mimetismo Biológico/genética , Mariposas Diurnas/genética , Proteínas de Insectos/genética , Polimorfismo Genético , Alelos , Animales , Mariposas Diurnas/fisiología , Exones , Femenino , Frecuencia de los Genes , Japón , Masculino , Filogenia , Taiwán , Alas de Animales/fisiología
18.
Curr Opin Insect Sci ; 17: 16-23, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27720069

RESUMEN

In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.


Asunto(s)
Lepidópteros/genética , Pigmentación/genética , Animales , Mimetismo Biológico/genética , Bombyx/genética , Bombyx/crecimiento & desarrollo , Femenino , Larva , Lepidópteros/crecimiento & desarrollo
19.
PLoS One ; 11(9): e0163496, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27662593

RESUMEN

Transposons, or transposable elements, are the major components of genomes in most eukaryotes. Some groups of transposons have developed target specificity that limits the integration sites to a specific nonessential sequence or a genomic region to avoid gene disruption caused by insertion into an essential gene. R2 is one of the most intensively investigated groups of sequence-specific non-LTR retrotransposons and is inserted at a specific site inside of 28S ribosomal RNA (rRNA) genes. R2 is known to be distributed among at least six animal phyla even though its occurrence is reported to be patchy. Here, in order to obtain a more detailed picture of the distribution of R2, we surveyed R2 using both in silico screening and degenerate PCR, particularly focusing on actinopterygian fish. We found two families of the R2C lineage from vertebrates, although it has previously only been found in platyhelminthes. We also revealed the apparent movement of insertion sites of a lineage of actinopterygian R2, which was likely concurrent with the acquisition of a 28S rRNA-derived sequence in their 3' UTR. Outside of actinopterygian fish, we revealed the maintenance of a single R2 lineage in birds; the co-existence of four lineages of R2 in the leafcutter bee Megachile rotundata; the first examples of R2 in Ctenophora, Mollusca, and Hemichordata; and two families of R2 showing no target specificity. These findings indicate that R2 is relatively stable and universal, while differences in the distribution and maintenance of R2 lineages probably reflect characteristics of some combination of both R2 lineages and host organisms.

20.
Mol Cell Biol ; 36(10): 1494-508, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976636

RESUMEN

Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner.


Asunto(s)
Anopheles/genética , ADN Ribosómico/genética , ARN Ribosómico 18S/genética , Retroelementos , Animales , Sistemas de Lectura Abierta , Poli A , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...