Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 299: 110598, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32900436

RESUMEN

A change of layer arrangement of shoot apical meristem (SAM) organized by three cell layers (L1, L2 and L3) is thought to be one of the provocations of bud sport, which often induces changes in phenotypic colors in periclinal chimeras. This paper describes a cell layer rearrangement which is the cause of spontaneous flower color mutation by using two carnation (Dianthus caryophyllus L.) cultivars that are presumably periclinal chimeras, 'Feminine Minami' (deep pink flower) and its recessive sport 'Tommy Minami' (pinkish red flower). The genotype of the acyl-glucose-dependent anthocyanin 5-glucosyltransferase (AA5GT) which is responsible for the color change of red to pink, in each cell layer was deduced by genomic analysis using tissues originated from specific cell layer and investigation of partial petal color mutations. In the results, the genotype of the L1 of 'Feminine Minami' was heterozygous for functional AA5GT and non-functional AA5GT carrying retrotransposon Ty1dic1 (AA5GT-Ty1dic1), and its inner cell layer hid red flower genotype, whereas AA5GT-Ty1dic1 of the L1 of 'Tommy Minami' became homogenic in absence of the insertion of a new Ty1dic1. Our outcomes concluded that the L1 of 'Tommy Minami' harboring the recessive AA5GT alleles are attributed to the inner cell layer of 'Feminine Minami' possessing red flower genotype.


Asunto(s)
Dianthus/fisiología , Pigmentos Biológicos/fisiología , Retroelementos/genética , Antocianinas , Quimera , Color , Dianthus/enzimología , Dianthus/genética , Flores/genética , Flores/fisiología , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Fitomejoramiento , Células Vegetales/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(42): 17137-42, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082137

RESUMEN

Photoperiodic floral induction has had a significant impact on the agricultural and horticultural industries. Changes in day length are perceived in leaves, which synthesize systemic flowering inducers (florigens) and inhibitors (antiflorigens) that determine floral initiation at the shoot apex. Recently, FLOWERING LOCUS T (FT) was found to be a florigen; however, the identity of the corresponding antiflorigen remains to be elucidated. Here, we report the identification of an antiflorigen gene, Anti-florigenic FT/TFL1 family protein (AFT), from a wild chrysanthemum (Chrysanthemum seticuspe) whose expression is mainly induced in leaves under noninductive conditions. Gain- and loss-of-function analyses demonstrated that CsAFT acts systemically to inhibit flowering and plays a predominant role in the obligate photoperiodic response. A transient gene expression assay indicated that CsAFT inhibits flowering by directly antagonizing the flower-inductive activity of CsFTL3, a C. seticuspe ortholog of FT, through interaction with CsFDL1, a basic leucine zipper (bZIP) transcription factor FD homolog of Arabidopsis. Induction of CsAFT was triggered by the coincidence of phytochrome signals with the photosensitive phase set by the dusk signal; flowering occurred only when night length exceeded the photosensitive phase for CsAFT induction. Thus, the gated antiflorigen production system, a phytochrome-mediated response to light, determines obligate photoperiodic flowering response in chrysanthemums, which enables their year-round commercial production by artificial lighting.


Asunto(s)
Chrysanthemum/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Fotoperiodo , Proteínas de Plantas/biosíntesis , Transactivadores/biosíntesis , Secuencia de Aminoácidos , Chrysanthemum/genética , Flores/genética , Sitios Genéticos/fisiología , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Transactivadores/genética
3.
J Exp Bot ; 63(3): 1461-77, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22140240

RESUMEN

Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums.


Asunto(s)
Chrysanthemum/metabolismo , Chrysanthemum/fisiología , Flores/metabolismo , Flores/fisiología , Fotoperiodo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética
4.
Methods Mol Biol ; 589: 87-96, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20099093

RESUMEN

This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).


Asunto(s)
Agrobacterium tumefaciens/genética , Dianthus/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Transformación Genética , Aclimatación , Proliferación Celular , Técnicas de Cultivo , Dianthus/crecimiento & desarrollo , Vectores Genéticos , Glucuronidasa/genética , Kanamicina Quinasa/genética , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Regeneración/genética , Factores de Tiempo
5.
Methods Mol Biol ; 344: 311-20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17033073

RESUMEN

Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.


Asunto(s)
Agrobacterium tumefaciens/genética , Dianthus/genética , Técnicas de Transferencia de Gen , Transformación Genética , Aclimatación , Agrobacterium tumefaciens/citología , Antibacterianos/farmacología , Southern Blotting , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Medios de Cultivo , ADN de Plantas/química , Dianthus/anatomía & histología , Dianthus/fisiología , Glucuronidasa/análisis , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Regeneración , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA