Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Sci Rep ; 13(1): 10757, 2023 07 04.
Article En | MEDLINE | ID: mdl-37402770

ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Autophagy/physiology , Neoplasms/pathology , Lysosomes/metabolism , Nitric Oxide Synthase Type I/metabolism
2.
Front Endocrinol (Lausanne) ; 14: 1153689, 2023.
Article En | MEDLINE | ID: mdl-37265706

Osteoarthritis (OA) is the most common degenerative and progressive joint disease. Cellular senescence is an irreversible cell cycle arrest progressive with age, while protein glycosylation is the most abundant post-translational modification, regulating various cellular and biological pathways. The implication of either chondrocyte senescence or protein glycosylation in the OA pathogenesis has been extensively and individually studied. In this study, we aimed to investigate the possible relationship between chondrocyte senescence and protein glycosylation on the pathogenesis of OA using single-cell RNA sequencing datasets of clinical OA specimens deposited in the Gene Expression Omnibus database with a different cohort. We demonstrated that both cellular senescence signal and protein glycosylation pathways in chondrocytes are validly associated with OA pathogenesis. In addition, the cellular senescence signal is well-connected to the O-linked glycosylation pathway in OA chondrocyte and vice-versa. The expression levels of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family, which is essential for the biosynthesis of O-Glycans at the early stage, are highly upregulated in OA chondrocytes. Moreover, the expression levels of the GALNT family are prominently associated with chondrocyte senescence as well as pathological features of OA. Collectively, these findings uncover a crucial relationship between chondrocyte senescence and O-linked glycosylation on the OA pathophysiology, thereby revealing a potential target for OA.


Chondrocytes , Osteoarthritis , Humans , Chondrocytes/metabolism , Glycosylation , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cellular Senescence/genetics , Protein Processing, Post-Translational
3.
JCI Insight ; 8(7)2023 04 10.
Article En | MEDLINE | ID: mdl-36862514

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor-expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis. We observed LAT1-dependent amino acid uptake in the hypothalamus, which was compromised in a mouse model of obesity and diabetes. Mice lacking LAT1 (encoded by solute carrier transporter 7a5, Slc7a5) in LepR-expressing neurons exhibited obesity-related phenotypes and higher bone mass. Slc7a5 deficiency caused sympathetic dysfunction and leptin insensitivity in LepR-expressing neurons before obesity onset. Importantly, restoring Slc7a5 expression selectively in LepR-expressing ventromedial hypothalamus neurons rescued energy and bone homeostasis in mice deficient for Slc7a5 in LepR-expressing cells. Mechanistic target of rapamycin complex-1 (mTORC1) was found to be a crucial mediator of LAT1-dependent regulation of energy and bone homeostasis. These results suggest that the LAT1/mTORC1 axis in LepR-expressing neurons controls energy and bone homeostasis by fine-tuning sympathetic outflow, thus providing in vivo evidence of the implications of amino acid sensing by hypothalamic neurons in body homeostasis.


Hypothalamus , Large Neutral Amino Acid-Transporter 1 , Mice , Animals , Large Neutral Amino Acid-Transporter 1/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Neurons/metabolism , Homeostasis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
4.
Cancer Res Commun ; 3(1): 148-159, 2023 01.
Article En | MEDLINE | ID: mdl-36968222

Glioma stem cells (GSC) promote the malignancy of glioblastoma (GBM), the most lethal brain tumor. ERK5 belongs to the MAPK family. Here, we demonstrated that MAPK kinase 5 (MEK5)-ERK5-STAT3 pathway plays an essential role in maintaining GSC stemness and tumorigenicity by integrating genetic and pharmacologic manipulation and RNA sequencing analysis of clinical specimens. ERK5 was highly expressed and activated in GSCs. ERK5 silencing by short hairpin RNA in GSCs suppressed the self-renewal potential and GBM malignant growth concomitant with downregulation of STAT3 phosphorylation. Conversely, the activation of the MEK5-ERK5 pathway by introducing ERK5 or MEK5 resulted in increased GSC stemness. The introduction of STAT3 counteracted the GSC phenotypes by ERK5 silencing. Moreover, ERK5 expression and signaling are associated with poor prognosis in patients with GBM with high stem cell properties. Finally, pharmacologic inhibition of ERK5 significantly inhibited GSC self-renewal and GBM growth. Collectively, these findings uncover a crucial role of the MEK5-ERK5-STAT3 pathway in maintaining GSC phenotypes and GBM malignant growth, thereby providing a potential target for GSC-directed therapy. Significance: In this study, we demonstrated that MEK5-ERK5-STAT3 axis plays a critical role in maintaining stemness and tumorigenicity in GSCs by using genetic, pharmacologic, and bioinformatics tools, identifying the MEK5-ERK5-STAT3 axis as a potential target for GSC-directed therapy.


Glioblastoma , Glioma , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Glioma/genetics , Glioblastoma/genetics
5.
Biol Pharm Bull ; 46(2): 348-353, 2023.
Article En | MEDLINE | ID: mdl-36724964

Royal jelly (RJ), an essential food for the queen honeybee, has a variety of biological activities. Although RJ exerts preventive effects on various lifestyle-related diseases, such as osteoporosis and obesity, no study evaluated the effect of RJ on the development of osteoarthritis (OA), the most common degenerative joint disease. Here, we showed that daily oral administration of raw RJ significantly prevented OA development in vivo following surgically-induced knee joint instability in mice. Furthermore, in vitro experiments using chondrocytes, revealed that raw RJ significantly reduced the expression of inflammatory cytokines and enzymes critical for the degradation of the extracellular matrix (ECM). Similar results were observed after treatment with 10-hydroxy-2-decenoic acid, the most abundant and unique fatty acid in raw RJ. Our results suggest that oral supplementation with RJ would benefit the maintenance of joint health and prophylaxis against OA, possibly by suppressing the activity of inflammatory cytokines and ECM-degrading enzymes.


Fatty Acids , Osteoarthritis , Animals , Bees , Mice , Fatty Acids/therapeutic use , Fatty Acids/pharmacology , Cytokines/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Dietary Supplements
6.
J Cell Physiol ; 237(11): 4292-4302, 2022 11.
Article En | MEDLINE | ID: mdl-36161979

Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L-type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal-onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5-deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1-GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.


Large Neutral Amino Acid-Transporter 1 , Scoliosis , Animals , Mice , Amino Acids , Chondrocytes/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Scoliosis/genetics , Scoliosis/metabolism , Scoliosis/pathology , Disease Models, Animal
7.
Stem Cell Reports ; 17(7): 1576-1588, 2022 07 12.
Article En | MEDLINE | ID: mdl-35777359

Bone marrow mesenchymal stem cells (MSCs) are critical regulators of postnatal bone homeostasis. Osteoporosis is characterized by bone volume and strength deterioration, partly due to MSC dysfunction. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Here, CDK8 in MSCs was identified as important for bone homeostasis. CDK8 level was increased in aged MSCs along with the association with aging-related signals. Mouse genetic studies revealed that CDK8 in MSCs plays a crucial role in bone resorption and homeostasis. Mechanistically, CDK8 in MSCs extrinsically controls osteoclastogenesis through the signal transducer and transcription 1 (STAT1)-receptor activator of the nuclear factor κ Β ligand (RANKL) axis. Moreover, aged MSCs have high osteoclastogenesis-supporting activity, partly through a CDK8-dependent manner. Finally, pharmacological inhibition of CDK8 effectively repressed MSC-dependent osteoclastogenesis and prevented ovariectomy-induced osteoclastic activation and bone loss. These findings highlight that the CDK8-STAT1-RANKL axis in MSCs could play a crucial role in bone resorption and homeostasis.


Bone Resorption , Cyclin-Dependent Kinase 8/metabolism , Mesenchymal Stem Cells , Animals , Bone Resorption/genetics , Cell Differentiation , Cyclin-Dependent Kinase 8/genetics , Female , Homeostasis , Mesenchymal Stem Cells/metabolism , Mice , NF-kappa B/metabolism , Osteoclasts , Osteogenesis/genetics , RANK Ligand/metabolism , RANK Ligand/pharmacology
8.
Stem Cells ; 40(4): 411-422, 2022 04 29.
Article En | MEDLINE | ID: mdl-35304894

Extracellular signal-regulated kinase 5 (Erk5) belongs to the mitogen-activated protein kinase (MAPK) family. Previously, we demonstrated that Erk5 directly phosphorylates Smad-specific E3 ubiquitin protein ligase 2 (Smurf2) at Thr249 (Smurf2Thr249) to activate its E3 ubiquitin ligase activity. Although we have clarified the importance of Erk5 in embryonic mesenchymal stem cells (MSCs) on skeletogenesis, its role in adult bone marrow (BM)-MSCs on bone homeostasis remains unknown. Leptin receptor-positive (LepR+) BM-MSCs represent a major source of bone in adult bone marrow and are critical regulators of postnatal bone homeostasis. Here, we identified Erk5 in BM-MSCs as an important regulator of bone homeostasis in adulthood. Bone marrow tissue was progressively osteosclerotic in mice lacking Erk5 in LepR+ BM-MSCs with age, accompanied by increased bone formation and normal bone resorption in vivo. Erk5 deficiency increased the osteogenic differentiation of BM-MSCs along with a higher expression of Runx2 and Osterix, essential transcription factors for osteogenic differentiation, without affecting their stemness in vitro. Erk5 deficiency decreased Smurf2Thr249 phosphorylation and subsequently increased Smad1/5/8-dependent signaling in BM-MSCs. The genetic introduction of the Smurf2T249E mutant (a phosphomimetic mutant) suppressed the osteosclerotic phenotype in Erk5-deficient mice. These findings suggest that the Erk5-Smurf2Thr249 axis in BM-MSCs plays a critical role in the maintenance of proper bone homeostasis by preventing excessive osteogenesis in adult bone marrow.


Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Marrow Cells/metabolism , Cell Differentiation/physiology , Homeostasis , Mesenchymal Stem Cells/metabolism , Mice , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Osteogenesis/genetics
9.
Commun Biol ; 5(1): 22, 2022 01 11.
Article En | MEDLINE | ID: mdl-35017630

Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-ß receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


Glioblastoma , Receptors, Transforming Growth Factor beta/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Female , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Mice, Nude , Mutation/genetics , Phosphorylation/genetics
10.
Oncogene ; 40(15): 2803-2815, 2021 04.
Article En | MEDLINE | ID: mdl-33727660

Glioblastoma (GBM) is the most malignant form of glioma. Glioma stem cells (GSCs) contribute to the initiation, progression, and recurrence of GBM as a result of their self-renewal potential and tumorigenicity. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Although CDK8 has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in gliomagenesis remain largely unknown. Here, we demonstrate how CDK8 plays an essential role in maintaining stemness and tumorigenicity in GSCs. The genetic inhibition of CDK8 by shRNA or CRISPR interference resulted in an abrogation of the self-renewal potential and tumorigenicity of patient-derived GSCs, which could be significantly rescued by the ectopic expression of c-MYC, a stem cell transcription factor. Moreover, we demonstrated that the pharmacological inhibition of CDK8 significantly attenuated the self-renewal potential and tumorigenicity of GSCs. CDK8 expression was significantly higher in human GBM tissues than in normal brain tissues, and its expression was positively correlated with stem cell markers including c-MYC and SOX2 in human GBM specimens. Additionally, CDK8 expression is associated with poor survival in GBM patients. Collectively, these findings highlight the importance of the CDK8-c-MYC axis in maintaining stemness and tumorigenicity in GSCs; these findings also identify the CDK8-c-MYC axis as a potential target for GSC-directed therapy.


Brain Neoplasms/metabolism , Cyclin-Dependent Kinase 8/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cyclin-Dependent Kinase 8/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction
11.
Biol Pharm Bull ; 43(12): 1983-1986, 2020.
Article En | MEDLINE | ID: mdl-33268720

The mechanistic/mammalian target of rapamycin complex-1 (mTORC1) integrates multiple signaling pathways and regulates various cellular processes. Tuberous sclerosis complex 1 (Tsc1) and complex 2 (Tsc2) are critical negative regulators of mTORC1. Mouse genetic studies, including ours, have revealed that inactivation of mTORC1 in undifferentiated mesenchymal cells and chondrocytes leads to severe skeletal abnormalities, indicating a pivotal role for mTORC1 in skeletogenesis. Here, we show that hyperactivation of mTORC1 influences skeletal development through its expression in undifferentiated mesenchymal cells at the embryonic stage. Inactivation of Tsc1 in undifferentiated mesenchymal cells by paired-related homeobox 1 (Prx1)-Cre-mediated recombination led to skeletal abnormalities in appendicular skeletons. In contrast, Tsc1 deletion in chondrocytes using collagen type II α1 (Col2a1)-Cre or in osteoprogenitors using Osterix (Osx)-Cre did not result in skeletal defects in either appendicular or axial skeletons. These findings indicate that Tsc complex-mediated chronic overactivation of mTORC1 influences skeletal development at the embryonic stage through its expression in undifferentiated mesenchymal cells but not in chondrocytes or osteoprogenitors.


Bone Development/physiology , Chondrocytes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Tuberous Sclerosis Complex 1 Protein/deficiency , Animals , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tuberous Sclerosis Complex 1 Protein/genetics
12.
Biochem Biophys Res Commun ; 533(1): 30-35, 2020 11 26.
Article En | MEDLINE | ID: mdl-32917361

The mechanistic/mammalian target of rapamycin (mTOR) regulates various cellular processes, in part through incorporation into distinct protein complexes. The mTOR complex 1 (mTORC1) contains the Raptor subunit, while mTORC2 specifically contains the Rictor subunit. Mouse genetic studies, including ours, have revealed a critical role for mTOR in skeletogenesis through its expression in undifferentiated mesenchymal cells. In addition, we have recently revealed that mTORC1 expression in chondrocytes is crucial for skeletogenesis. Recent work indicates that mTOR regulates cellular functions, depending on the context, through both complex-dependent (canonical pathway) and complex-independent roles (noncanonical pathway). Here, we determined that mTOR regulates skeletal development through the noncanonical pathway, as well as the canonical pathway, in a cell-type and context-specific manner. Inactivation of Mtor in undifferentiated mesenchymal cells or chondrocytes led to either severe hypoplasia in appendicular skeletons or a severe and generalized chondrodysplasia, respectively. Moreover, Rictor deletion in undifferentiated mesenchymal cells or chondrocytes led to mineralization defects in some skeletal components. Finally, we revealed that simultaneous deletion of Raptor and Rictor in undifferentiated mesenchymal cells recapitulated the appendicular skeletal phenotypes of Mtor deficiency, whereas chondrocyte-specific Raptor and Rictor double-mutants exhibited milder hypoplasia of appendicular and axial skeletons than those seen upon Mtor deletion. These findings indicate that mTOR regulates skeletal development mainly through the canonical pathway in undifferentiated mesenchymal cells, but at least in part through the noncanonical pathway in chondrocytes.


Chondrocytes/cytology , Mesenchymal Stem Cells/cytology , Skeleton/embryology , TOR Serine-Threonine Kinases/metabolism , Animals , Chondrocytes/metabolism , Gene Deletion , Gene Expression Regulation, Developmental , Mesenchymal Stem Cells/metabolism , Mice , Signal Transduction , Skeleton/metabolism , TOR Serine-Threonine Kinases/genetics
13.
Endocrinology ; 160(12): 2837-2848, 2019 12 01.
Article En | MEDLINE | ID: mdl-31555819

Extracellular signal-regulated kinase 5 (Erk5), a member of the MAPK family, is specifically phosphorylated and activated by MAPK/Erk kinase-5. Although it has been implicated in odor discrimination and long-term memory via its expression in the central nervous system, little is known regarding the physiological importance of neuronal Erk5 in body weight and energy homeostasis. In the current study, systemic insulin injection significantly induced phosphorylation of Erk5 in the hypothalamus. Moreover, Erk5 deficiency in leptin receptor (LepR)‒expressing neurons led to an obesity phenotype, with increased white adipose tissue mass due to increased adipocyte size, only in female mice fed a normal chow diet. Furthermore, Erk5 deficiency in LepR-expressing neurons showed impaired glucose tolerance along with decreased physical activity, food intake, and energy expenditure. These results suggest that Erk5 controls body weight and systemic energy homeostasis probably via its expression in hypothalamic neurons in female mice, thereby providing a target for metabolic diseases such as obesity and type 2 diabetes mellitus.


Body Weight , Energy Metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neurons/metabolism , Receptors, Leptin/metabolism , Adipose Tissue, White , Animals , Blood Glucose , Eating , Female , Homeostasis , Hypothalamus/metabolism , Insulin , Male , Mice, Inbred C57BL , Motor Activity , Phosphorylation
14.
Front Pharmacol ; 10: 684, 2019.
Article En | MEDLINE | ID: mdl-31263418

The mechanistic/mammalian target of rapamycin (mTOR) is widely implicated in the pathogenesis of various diseases, including cancer, obesity, and cardiovascular disease. Bone homeostasis is maintained by the actions of bone-resorbing osteoclasts and bone-forming osteoblasts. An imbalance in the sophisticated regulation of osteoclasts and osteoblasts leads to the pathogenesis as well as etiology of certain metabolic bone diseases, including osteoporosis and osteopetrosis. Here, we identified mTOR complex 1 (mTORC1) as a pivotal mediator in the regulation of bone resorption and bone homeostasis under pathological conditions through its expression in osteoclasts. The activity of mTORC1, which was indicated by the phosphorylation level of its downstream target p70S6 kinase, was reduced during osteoclast differentiation, in accordance with the upregulation of Hamartin (encoded by tuberous sclerosis complex 1 [Tsc1]), a negative regulator of mTORC1. Receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclastogenesis was impaired in Tsc1-deficient bone marrow macrophages. By contrast, osteoclastogenesis was markedly enhanced by Raptor deficiency but was unaffected by Rictor deficiency. The deletion of Tsc1 in osteoclast lineage cells in mice prevented bone resorption and bone loss in a RANKL-induced mouse model of osteoporosis, although neither bone volume nor osteoclastic parameter was markedly altered in these knockout mice under physiological conditions. Therefore, these findings suggest that mTORC1 is a key potential target for the treatment of bone diseases.

15.
Sci Signal ; 12(589)2019 07 09.
Article En | MEDLINE | ID: mdl-31289211

L-type amino acid transporter 1 (LAT1), which is encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types, contributing to the pathogenesis of cancer and neurological disorders. Amino acid substrates of LAT1 have a beneficial effect on bone health directly and indirectly, suggesting a potential role for LAT1 in bone homeostasis. Here, we identified LAT1 in osteoclasts as important for bone homeostasis. Slc7a5 expression was substantially reduced in osteoclasts in a mouse model of ovariectomy-induced osteoporosis. The osteoclast-specific deletion of Slc7a5 in mice led to osteoclast activation and bone loss in vivo, and Slc7a5 deficiency increased osteoclastogenesis in vitro. Loss of Slc7a5 impaired activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in osteoclasts, whereas genetic activation of mTORC1 corrected the enhanced osteoclastogenesis and bone loss in Slc7a5-deficient mice. Last, Slc7a5 deficiency increased the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1) and the nuclear accumulation of NFATc1, a master regulator of osteoclast function, possibly through the canonical nuclear factor κB pathway and the Akt-glycogen synthase kinase 3ß signaling axis, respectively. These findings suggest that the LAT1-mTORC1 axis plays a pivotal role in bone resorption and bone homeostasis by modulating NFATc1 in osteoclasts, thereby providing a molecular connection between amino acid intake and skeletal integrity.


Amino Acid Transport System y+L/genetics , Bone and Bones/metabolism , Homeostasis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , Amino Acid Transport System y+L/deficiency , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Bone and Bones/cytology , Cells, Cultured , Female , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Ovariectomy , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics
16.
Yakugaku Zasshi ; 139(1): 15-18, 2019.
Article Ja | MEDLINE | ID: mdl-30606922

Although the transcriptional modulator interferon-related developmental regulator 1 (Ifrd1) has been identified as a transcriptional coactivator/repressor in various cells, including bone-resorbing osteoclasts, no attention has been paid to its role in bone-forming osteoblasts. Therefore, in this study we show that Ifrd1 is a critical mediator of both osteoblastogenesis and osteoclastogenesis through its expression in osteoblasts. Ifrd1 deficiency enhanced both osteoblast differentiation and maturation, and increased the expression of Runt-related transcription factor 2 and Osterix. A coculture experiment revealed that Ifrd1 deficient osteoblasts have higher osteoprotegerin (OPG) expression and less ability to support osteoclastogenesis. These findings suggest that Ifrd1 plays a pivotal role in bone homeostasis through its expression in osteoblasts, and represents a therapeutic target for bone disease.


Bone and Bones/metabolism , Cell Differentiation/genetics , Homeostasis/genetics , Immediate-Early Proteins/physiology , Membrane Proteins/physiology , Osteoblasts/cytology , Osteogenesis/genetics , Animals , Bone Diseases/genetics , Bone Diseases/therapy , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Expression , Humans , Immediate-Early Proteins/metabolism , Membrane Proteins/metabolism , Mice , Molecular Targeted Therapy , Osteoblasts/metabolism , Osteoclasts/metabolism , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism
17.
Bio Protoc ; 9(1): e3133, 2019 Jan 05.
Article En | MEDLINE | ID: mdl-33654761

Mesenchymal stem cells have the ability to differentiate into multiple lineages, including adipocytes, osteoblasts and chondrocytes. Mesenchymal stem cells can be induced to differentiate into chondrocytes in extracellular matrices, such as alginate or collagen gel. Mesenchymal stem cells in a cell pellet or micromass culture can be also induced to form cartilages in a defined medium containing chondrogenic cytokines, such as transforming growth factor-ß (TGF-ß). Here, we describe a simple method to form cartilage by seeding mesenchymal cells derived from limb-bud cells at high cell density. First, we dissected the limb buds from embryonic mice (embryonic day 12.5) and digested them with enzymes (dispase and collagenase). After filtration using a cell strainer, we seeded the cells at high density. Unlike other methods, the method described here is simple and does not require the use of specialized equipment, expensive materials or complex reagents.

18.
Stem Cell Reports ; 11(1): 228-241, 2018 07 10.
Article En | MEDLINE | ID: mdl-30008325

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5' terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA.


Mechanistic Target of Rapamycin Complex 1/metabolism , Osteogenesis/genetics , Protein Biosynthesis , SOX9 Transcription Factor/genetics , Skeleton/metabolism , Animals , Cell Differentiation/genetics , Gene Expression , Mice , Mice, Transgenic , Phenotype , SOX9 Transcription Factor/metabolism , Skeleton/embryology
19.
Development ; 145(14)2018 07 26.
Article En | MEDLINE | ID: mdl-29986870

Erk5 belongs to the mitogen-activated protein kinase (MAPK) family. Following its phosphorylation by Mek5, Erk5 modulates several signaling pathways in a number of cell types. In this study, we demonstrated that Erk5 inactivation in mesenchymal cells causes abnormalities in skeletal development by inducing Sox9, an important transcription factor of skeletogenesis. We further demonstrate that Erk5 directly phosphorylates and activates Smurf2 (a ubiquitin E3 ligase) at Thr249, which promotes the proteasomal degradation of Smad proteins and phosphorylates Smad1 at Ser206 in the linker region known to trigger its proteasomal degradation by Smurf1. Smads transcriptionally activated the expression of Sox9 in mesenchymal cells. Accordingly, removal of one Sox9 allele in mesenchymal cells from Erk5-deficient mice rescued some abnormalities of skeletogenesis. These findings highlight the importance of the Mek5-Erk5-Smurf-Smad-Sox9 axis in mammalian skeletogenesis.


Mitogen-Activated Protein Kinase 7/metabolism , Osteogenesis , SOX9 Transcription Factor/metabolism , Signal Transduction , Smad Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Differentiation , Chondrogenesis , Humans , Mesoderm/cytology , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proteolysis , Skull/abnormalities , Ubiquitin/metabolism , Ubiquitination
20.
Pharmacology ; 101(1-2): 64-71, 2018.
Article En | MEDLINE | ID: mdl-29065407

The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.


Adipocytes, Brown/metabolism , Amino Acid Transport System A/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia/genetics , Obesity/genetics , Animals , Cell Line , Male , Mice , Mice, Inbred C57BL , Mice, Obese , RNA, Small Interfering/genetics
...