Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 181
2.
Nat Plants ; 10(5): 785-797, 2024 May.
Article En | MEDLINE | ID: mdl-38605238

Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.


Gene Expression Regulation, Plant , Haploidy , Marchantia , Plant Proteins , Transcription Factors , Marchantia/genetics , Marchantia/growth & development , Marchantia/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reproduction/genetics , Germ Cells, Plant/growth & development , Germ Cells, Plant/metabolism
3.
New Phytol ; 242(3): 1146-1155, 2024 May.
Article En | MEDLINE | ID: mdl-38462819

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Meristem/metabolism , Trans-Activators/metabolism , Xylem/metabolism
4.
PNAS Nexus ; 3(2): pgae049, 2024 Feb.
Article En | MEDLINE | ID: mdl-38352176

Plants respond to various environmental stimuli in sophisticated ways. Takahashi et al. (2018) revealed that CLAVATA3/EMBRYO SURROUNDING REIGON-related 25 (CLE25) peptide is produced in roots under drought stress and transported to shoots, where it induces abscisic acid biosynthesis, resulting in drought resistance in Arabidopsis. However, the drought-related function of the CLE26 peptide, which has the same amino acid sequence as CLE25 (except for one amino acid substitution), is still unknown. In this study, a phenotypic analysis of Arabidopsis plants under repetitive drought stress treatment indicates that CLE26 is associated with drought stress memory and promotes survival rate at the second dehydration event. Additionally, we find that a loss-of-function mutant of a cell-wall-modifying gene, XYLANASE1 (XYN1), exhibits improved resistance to drought, which is suppressed by the mutation of CLE26. XYN1 is down-regulated in response to drought in wild-type plants. A further analysis shows that the synthetic CLE26 peptide is well transported in both xyn1 and drought-pretreated wild-type plants but not in untreated wild-type plants. These results suggest a novel cell wall function in drought stress memory; short-term dehydration down-regulates XYN1 in xylem cells, leading to probable cell wall modification, which alters CLE26 peptide transport, resulting in drought resistance under subsequent long-term dehydration.

5.
Nat Plants ; 10(1): 100-117, 2024 01.
Article En | MEDLINE | ID: mdl-38172572

Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Phase Separation , Cell Wall/metabolism , Microtubules/metabolism , Xylem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
6.
J Virol ; 97(9): e0046323, 2023 09 28.
Article En | MEDLINE | ID: mdl-37668368

Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.


Gentiana , Nicotiana , Plant Tumors , Plant Viruses , Virulence Factors , Xylem , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/virology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gentiana/virology , Plant Viruses/genetics , Plant Viruses/pathogenicity , Nicotiana/metabolism , Nicotiana/virology , Xylem/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Plant Leaves , Plant Tumors/virology , Signal Transduction , RNA Splicing Factors
7.
Front Plant Sci ; 14: 1171531, 2023.
Article En | MEDLINE | ID: mdl-37351202

Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.

8.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Article En | MEDLINE | ID: mdl-37011193

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Meristem , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leucine Zippers/genetics , Cytokinins/metabolism , Cell Division , Gene Expression Regulation, Plant
9.
Plant Biotechnol (Tokyo) ; 39(1): 65-72, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35800965

Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.

10.
Cell Rep ; 40(2): 111059, 2022 07 12.
Article En | MEDLINE | ID: mdl-35830805

Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution.


Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Differentiation/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Sequence Analysis, RNA , Time Factors
11.
Plant Mol Biol ; 108(3): 225-239, 2022 Feb.
Article En | MEDLINE | ID: mdl-35038066

KEY MESSAGE: This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a ß-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Plant Roots/metabolism , Plant Shoots/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Down-Regulation , Estradiol/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/drug effects , Intercellular Signaling Peptides and Proteins , Plant Roots/genetics , Plant Shoots/genetics , Plants, Genetically Modified , Salicylic Acid/pharmacology , Seedlings/growth & development , Seedlings/metabolism , Transcription Factors/genetics , Up-Regulation
12.
Quant Plant Biol ; 3: e15, 2022.
Article En | MEDLINE | ID: mdl-37077981

Stem cell fates are spatio-temporally regulated during plant development. Time-lapse imaging of fluorescence reporters is the most widely used method for spatio-temporal analysis of biological processes. However, excitation light for imaging fluorescence reporters causes autofluorescence and photobleaching. Unlike fluorescence reporters, luminescence proteins do not require excitation light, and therefore offer an alternative reporter for long-term and quantitative spatio-temporal analysis. We established an imaging system for luciferase, which enabled monitoring cell fate marker dynamics during vascular development in a vascular cell induction system called VISUAL. Single cells expressing the cambium marker, proAtHB8:ELUC, had sharp luminescence peaks at different time points. Furthermore, dual-color luminescence imaging revealed spatio-temporal relationships between cells that differentiated into xylem or phloem, and cells that transitioned from procambium to cambium. This imaging system enables not only the detection of temporal gene expression, but also facilitates monitoring of spatio-temporal dynamics of cell identity transitions at the single cell level.

13.
New Phytol ; 232(2): 734-752, 2021 10.
Article En | MEDLINE | ID: mdl-34375004

Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.


Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Pseudomonas syringae , Transcription Factors/genetics
14.
Plant Cell ; 33(8): 2618-2636, 2021 08 31.
Article En | MEDLINE | ID: mdl-34059919

In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.


Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Cambium/genetics , DNA-Binding Proteins/metabolism , Data Visualization , Databases, Genetic , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Gene Regulatory Networks , Hypocotyl/genetics , Hypocotyl/growth & development , Mutation , Phloem/genetics , Phylogeny , Plants, Genetically Modified , Response Elements , Xylem/genetics
16.
Plant Mol Biol ; 104(6): 561-574, 2020 Dec.
Article En | MEDLINE | ID: mdl-32980951

KEY MESSAGE: This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the ß-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.


Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Carbohydrate Metabolism , Plant Shoots/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , CRISPR-Cas Systems , Darkness , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene-Environment Interaction , Light , Plant Shoots/radiation effects , Plants, Genetically Modified , Protein Domains/genetics , Signal Transduction
17.
Curr Opin Plant Biol ; 57: 118-123, 2020 10.
Article En | MEDLINE | ID: mdl-32927424

Vascular development involves multiple processes, including the establishment of vascular stem cells (e.g. procambium/cambium cells), stem cell divisions, and cell specification. A number of key transcription factors regulating vascular development have been identified, and the molecular mechanisms underlying these regulators have been keenly investigated. These studies uncovered that transcriptional regulation and phytohormone signaling have central roles in proceeding vascular developmental processes. Recent research approaches contributed to identify key transcription factors and their downstream genes, which enhanced our understanding of vascular development. This review discusses some research approaches and emerging molecular mechanisms that mediate the activation of transcriptional networks regulating root vascular development.


Cambium , Gene Regulatory Networks , Plant Growth Regulators , Transcription Factors/genetics
18.
Methods Mol Biol ; 2149: 89-109, 2020.
Article En | MEDLINE | ID: mdl-32617931

Plant tissue cultures are an efficient system to study cell wall biosynthesis in living cells in vivo. Tissue cultures also provide cells and culture medium from which enzymes and cell wall polymers can easily be separated for further studies. Tissue cultures with tracheary element differentiation or extracellular lignin formation have provided useful information related to several aspects of xylem and lignin formation. In this chapter, methods for nutrient medium preparation and callus culture initiation and its maintenance as well as those for protoplast isolation and viability observation are described. As a case study, we describe the establishment of a xylogenic culture of Zinnia elegans mesophyll cells.


Plants/metabolism , Tissue Culture Techniques/methods , Asteraceae/cytology , Cell Differentiation , Cell Division , Cell Wall/metabolism , Cells, Cultured , Germination , Mesophyll Cells/cytology , Mesophyll Cells/metabolism , Plant Leaves/cytology , Protoplasts/metabolism , Sterilization , Nicotiana/cytology
19.
Sci Adv ; 6(26): eaaz2963, 2020 06.
Article En | MEDLINE | ID: mdl-32637594

DNA demethylation is important for the erasure of DNA methylation. The role of DNA demethylation in plant development remains poorly understood. Here, we found extensive DNA demethylation in the CHH context around pericentromeric regions and DNA demethylation in the CG, CHG, and CHH contexts at discrete genomic regions during ectopic xylem tracheary element (TE) differentiation. While loss of pericentromeric methylation occurs passively, DNA demethylation at a subset of regions relies on active DNA demethylation initiated by DNA glycosylases ROS1, DML2, and DML3. The ros1 and rdd mutations impair ectopic TE differentiation and xylem development in the young roots of Arabidopsis seedlings. Active DNA demethylation targets and regulates many genes for TE differentiation. The defect of xylem development in rdd is proposed to be caused by dysregulation of multiple genes. Our study identifies a role of active DNA demethylation in vascular development and reveals an epigenetic mechanism for TE differentiation.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Demethylation , DNA Methylation , Gene Expression Regulation, Plant , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics
20.
iScience ; 23(7): 101332, 2020 Jul 24.
Article En | MEDLINE | ID: mdl-32668199

Somatic plant cells can regenerate shoots and/or roots or adventitious embryonic calluses, which may induce organ formation under certain conditions. Such regenerations occur via dedifferentiation of somatic cells, induction of organs, and their subsequent outgrowth. Despite recent advances in understanding of plant regeneration, many details of shoot induction remain unclear. Here, we artificially induced shoot stem-like green organs (SSOs) in Arabidopsis thaliana roots via simultaneous induction of two transcription factors (TFs), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 25 (ATHB25, At5g65410) and the B3 family transcription factor REPRODUCTIVE MERISTEM 7 (REM7, At3g18960). The SSOs exhibited negative gravitropism and differentiated vascular bundle phenotypes. The ATHB25/REM7 induced the expression of genes controlling shoot stem characteristics by ectopic expression in roots. Intriguingly, the restoration of root growth was seen in the consecutive and adjacent parts of the SSOs under gene induction conditions. Our findings thus provide insights into the development and regeneration of plant shoot stems.

...