Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203635

RESUMEN

Small-molecule compounds strongly affecting osteogenesis can form the basis of effective therapeutic strategies in bone regenerative medicine. A cell-based high-throughput screening system might be a powerful tool for identifying osteoblast-targeting candidates; however, this approach is generally limited with using only one molecule as a cell-based sensor that does not always reflect the activation of the osteogenic phenotype. In the present study, we used the MC3T3-E1 cell line stably transfected with the green fluorescent protein (GFP) reporter gene driven by a fragment of type I collagen promoter (Col-1a1GFP-MC3T3-E1) to evaluate a double-screening system to identify osteogenic inducible compounds using a combination of a cell-based reporter assay and detection of alkaline phosphatase (ALP) activity. Col-1a1GFP-MC3T3-E1 cells were cultured in an osteogenic induction medium after library screening of 1280 pharmacologically active compounds (Lopack1280). After 7 days, GFP fluorescence was measured using a microplate reader. After 14 days of osteogenic induction, the cells were stained with ALP. Library screening using the Col-1a1/GFP reporter and ALP staining assay detected three candidates with significant osteogenic induction ability. Furthermore, leflunomide, one of the three detected candidates, significantly promoted new bone formation in vivo. Therefore, this double-screening method could identify candidates for osteogenesis-targeting compounds more reliably than conventional methods.

2.
Bone ; 49(2): 264-74, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21504804

RESUMEN

Small molecule compounds that potently affect osteoclastogenesis could be useful as chemical probes for elucidating the mechanisms of various biological phenomena and as effective therapeutic strategies against bone resorption. An osteoclast progenitor cell-based high-throughput screening system was designed to target activation of NFAT, which is a key event for osteoclastogenesis. Orphan ligand library screening using this system identified the ß-carboline derivative harmine, which is a highly potent inhibitor of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), to be an NFAT regulator in osteoclasts. RAW264.7 cells highly expressed DYRK1A protein, and in vitro phosphorylation assay demonstrated that harmine directly inhibited the DYRK1A-mediated phosphorylation (in-activation) of NFATc1. Harmine promoted the dephosphorylation (activation) of NFATc1 in RAW264.7 cells within 24h, and it significantly increased the expression of NFATc1 in RAW264.7 cells and mouse primary bone marrow macrophages (BMMs) both in the presence and absence of RANKL stimulation. Although harmine promoted NFATc1 expression and stimulated target genes for osteoclastogenesis, cell-cell fusion and the formation of TRAP-positive multinucleated osteoclasts from RAW264.7 cells and BMMs was significantly inhibited by harmine treatment. Meanwhile, harmine remarkably promoted the expression of inhibitor of DNA binding/differentiation-2 (Id2), which is a negative regulator for osteoclastogenesis, in RAW264.7 cells and BMMs. An Id2-null-mutant showed slightly increased osteoclast formation from BMMs, and the harmine-mediated inhibition of osteoclast formation was abolished in the BMMs of Id2-null-mutant mice. These results suggest that harmine is a potent activator of NFATc1 that interferes with the function of DYRK1A in osteoclast precursors and also up-regulates Id2 protein, which may dominantly inhibit expression pathways associated with cell-cell fusion, thereby leading to the disruption of the fusion events mediating osteoclastogenesis. The small molecule harmine is therefore expected to provide an experimental tool for investigating signaling cascades in osteoclastogenesis, especially those centered on DYRK1A-mediated NFATc1 and Id2 regulation.


Asunto(s)
Harmina/farmacología , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Masculino , Ratones , Ratones Mutantes , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Quinasas DyrK
3.
Biochem Biophys Res Commun ; 404(4): 910-4, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21184742

RESUMEN

Activation of anti-apoptotic gene transcription by NF-κB (nuclear factor-kappa B) has been reported to be linked with a resistance of cancer cells against chemotherapy. NEMO (NF-κB essential modulator) interacts with a number of proteins and modulates the activity of NF-κB pathway. In this study, we revealed that RPAP3 (RNA polymerase II-associated protein 3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO and that RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-κB pathway. These results indicate that RPAP3 may be a novel modulator of NF-κB pathway in apoptosis induced by anti-cancer chemotherapeutic agents.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis , Proteínas Portadoras/metabolismo , Doxorrubicina/farmacología , FN-kappa B/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , Línea Celular Tumoral , Humanos , Quinasa I-kappa B/metabolismo , Fosforilación , Ubiquitinación
4.
PLoS One ; 5(9): e12743, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20856871

RESUMEN

BACKGROUND: Induced pluripotent stem (iPS) cells efficiently generated from accessible tissues have the potential for clinical applications. Oral gingiva, which is often resected during general dental treatments and treated as biomedical waste, is an easily obtainable tissue, and cells can be isolated from patients with minimal discomfort. METHODOLOGY/PRINCIPAL FINDINGS: We herein demonstrate iPS cell generation from adult wild-type mouse gingival fibroblasts (GFs) via introduction of four factors (Oct3/4, Sox2, Klf4 and c-Myc; GF-iPS-4F cells) or three factors (the same as GF-iPS-4F cells, but without the c-Myc oncogene; GF-iPS-3F cells) without drug selection. iPS cells were also generated from primary human gingival fibroblasts via four-factor transduction. These cells exhibited the morphology and growth properties of embryonic stem (ES) cells and expressed ES cell marker genes, with a decreased CpG methylation ratio in promoter regions of Nanog and Oct3/4. Additionally, teratoma formation assays showed ES cell-like derivation of cells and tissues representative of all three germ layers. In comparison to mouse GF-iPS-4F cells, GF-iPS-3F cells showed consistently more ES cell-like characteristics in terms of DNA methylation status and gene expression, although the reprogramming process was substantially delayed and the overall efficiency was also reduced. When transplanted into blastocysts, GF-iPS-3F cells gave rise to chimeras and contributed to the development of the germline. Notably, the four-factor reprogramming efficiency of mouse GFs was more than 7-fold higher than that of fibroblasts from tail-tips, possibly because of their high proliferative capacity. CONCLUSIONS/SIGNIFICANCE: These results suggest that GFs from the easily obtainable gingival tissues can be readily reprogrammed into iPS cells, thus making them a promising cell source for investigating the basis of cellular reprogramming and pluripotency for future clinical applications. In addition, high-quality iPS cells were generated from mouse GFs without Myc transduction or a specific system for reprogrammed cell selection.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Encía/citología , Células Madre Pluripotentes Inducidas/citología , Animales , Células Cultivadas , Técnicas de Cultivo , Fibroblastos/metabolismo , Expresión Génica , Encía/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...