Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Avian Pathol ; 52(1): 36-50, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36205531

RESUMEN

Newcastle disease (ND) is caused by virulent forms of avian paramyxovirus-1 (APMV-1) and is an economically important disease of poultry world-wide. Pigeon paramyxovirus 1 (PPMV-1), a sub-group of APMV-1 is endemic in Columbiformes and can cause infections of poultry. An outbreak of ND in partridges in Scotland, UK, in 2006 (APMV-1/partridge/UK(Scotland)/7575/06) was identified as a class II, genotype VI.2.1.1.2.1, more commonly associated with PPMV-1. It has been hypothesized that game birds may be a route of transmission into commercial poultry settings due to the semi-feral rearing system, which potentially brings them into contact with both wild-birds and poultry species. Therefore, the pathogenesis and transmission of APMV-1/partridge/UK(Scotland)/7575/06 in game birds and chickens was investigated, and compared to a contemporary PPMV-1 isolate, PPMV-1/pigeon/UK/015874/15. Viral shedding and seroconversion profiles demonstrated that pheasants were susceptible to infection with APMV-1/partridge/UK(Scotland)/7575/06 with limited clinical signs observed although they were able to excrete and transmit virus. In contrast, partridges and pheasants showed limited infection with PPMV-1/pigeon/UK/015874/15, causing mild clinical disease. Chickens, however, were productively infected and were able to transmit virus in the absence of clinical signs. From the data, it can be deduced that whilst game birds may play a role in the transmission and epidemiology of genotype VI.2 APMV-1 viruses, the asymptomatic nature of circulation within these species precludes evaluation of natural infection by clinical surveillance. It therefore remains a possibility that genotype VI.2 APMV-1 infection in game birds has the potential for asymptomatic circulation and remains a potential threat to avian production systems.RESEARCH HIGHLIGHTS Demonstration of infection of game birds with Pigeon paramyxovirus-1 (PPMV-1).There are differing dynamics of infection between different game bird species.Differing dynamics of infection between different PPMV-1 isolates and genotypes in game birds and chickens.


Asunto(s)
Pollos , Enfermedad de Newcastle , Animales , Filogenia , Virus de la Enfermedad de Newcastle , Aves de Corral , Codorniz , Genotipo
2.
Transbound Emerg Dis ; 66(2): 696-704, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30390413

RESUMEN

A detailed veterinary and laboratory investigation revealed an unusual case of concurrent avian avulavirus type 1 (AAvV-1, formerly called avian paramyxovirus type 1) and low pathogenicity avian influenza (LPAI) virus infections of chickens during March 2010 in a mixed poultry and livestock farm in Great Britain. Respiratory signs and daily mortality of 5-6 birds in a broiler flock 8-weeks of age prompted submission of two carcasses to an Animal and Plant Health Agency (APHA) regional laboratory. Infectious bronchitis virus infection was suspected initially and virus isolation in SPF embryonated fowls' eggs was attempted at APHA-Weybridge. Avirulent AAvV-1 was detected in the first sampling. Both in vitro nucleotide sequencing of the fusion gene and in vivo pathotyping by intracerebral pathogenicity index revealed an avirulent AAvV-1 not definitively ascribed to licensed vaccine. Upon initial detection of the AAvV-1 virus, statutory restrictions were placed on the farm, an official veterinary visit was performed and further samples were submitted to APHA-Weybridge for official statutory disease investigation. An H2N3 LPAI virus was subsequently isolated from tissue samples and swabs submitted from the follow-up statutory investigation. The subtype was confirmed by haemagglutination inhibition test (HAIT) and neuraminidase inhibition (NI) tests on egg-amplified virus. As neither virus was notifiable according to the internationally recognized EU and OIE standards, and/or definitions of disease, statutory farm restrictions were lifted. Veterinary investigations identified the broiler flock to be free-range, next to a river and duck pen, reinforcing the suspicion of wild bird origin for both viruses which may have been co-circulating in ducks. It could not, however, be established as to whether there were separate introductions of the two viruses or whether there had been a single co-introduction of the viruses. The described case highlights the value of integrated surveillance and laboratory approaches, including veterinary field investigations, international standards and definitions of notifiable avian disease, validated RRT-PCR assays, and virus isolation in achieving rapid and accurate diagnostic results.


Asunto(s)
Coinfección/veterinaria , Gripe Aviar/diagnóstico , Gripe Aviar/epidemiología , Enfermedad de Newcastle/diagnóstico , Enfermedad de Newcastle/epidemiología , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/epidemiología , Animales , Animales Salvajes , Pollos , Coinfección/diagnóstico , Coinfección/epidemiología , Coinfección/virología , Patos , Monitoreo Epidemiológico/veterinaria , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Pavos , Reino Unido/epidemiología , Virulencia
3.
J Virol Methods ; 265: 9-14, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30579921

RESUMEN

Newcastle disease is a devastating disease of poultry caused by Newcastle disease virus (NDV), a virulent form of avian avulavirus 1 (AAvV-1). A rapid, sensitive and specific means for the detection of NDV is fundamental for the control of this notifiable transboundary virus. Although several real-time RT-PCR assays exist for the detection of AAvV-1, diagnostic sensitivity and specificities can be sub-optimal. In this study, we describe a modification to an existing AAvV-1 l-gene RT-PCR screening assay, where the original probe set was replaced with minor groove binding (MGB) probes, to create the MGB l-gene assay. The diagnostic sensitivity and specificity of this assay was evaluated against a broad panel of both Class I and Class II AAvV-1 viruses of diverse and representative lineages/genotypes in both clinical samples and amplified viruses, and compared with a number of previously published real-time RT-PCR screening assays for AAvV-1. The MGB l-gene assay outperformed all other assays in this assessment, with enhanced sensitivity and specificity, detecting isolates from a broad range of virus lineages/genotypes (including contemporaneously-circulating strains). The assay has also proved its value for screening original clinical samples for the presence of AAvV-1, thus providing an improved screening assay for routine detection of this notifiable disease agent.


Asunto(s)
Infecciones por Avulavirus/veterinaria , Avulavirus/aislamiento & purificación , Enfermedades de las Aves/diagnóstico , Enfermedades de las Aves/virología , Cartilla de ADN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Avulavirus/clasificación , Avulavirus/genética , Infecciones por Avulavirus/diagnóstico , Infecciones por Avulavirus/virología , Aves , Genotipo , Sensibilidad y Especificidad
4.
Avian Pathol ; 42(6): 566-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24188498

RESUMEN

Exposure of a virulent isolate of Newcastle disease virus (NDV) and two highly pathogenic avian influenza (HPAI) viruses, one of H7N1 subtype and the other H5N1 subtype, to a continuous ultraviolet B flux of approximately 90µW/cm(2), which models solar ultraviolet radiation, resulted in an exponential decline in infectivity with time. The time taken for a reduction in titre of 1 log10 median tissue culture infectious dose for each virus was: NDV, 69 min; H7N1 HPAI virus, 158 min; and H5N1 HPAI, virus 167 min.


Asunto(s)
Virus de la Influenza A/efectos de la radiación , Virus de la Enfermedad de Newcastle/efectos de la radiación , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Virus de la Influenza A/patogenicidad , Virus de la Enfermedad de Newcastle/patogenicidad , Factores de Tiempo , Virulencia
5.
Avian Pathol ; 41(4): 329-35, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22834545

RESUMEN

This review is written for the series celebrating the 40th year since the first issue of Avian Pathology. The aim of the authors was to cover the developments in Newcastle disease (ND) research over the last 40 years that they considered significant. During those 40 years there have been several panzootics of this serious disease in poultry and for the last 30 years there has been a continuing panzootic in domestic pigeons, which has spread to wild birds and poultry. The 40-year period began with worldwide outbreaks of severe ND, which served as an important impetus for ND research work. Although early work was concerned with controlling the disease, specifically by improving and developing new vaccines and vaccine regimens, even prior to the 1970s ND virus was seen as a useful laboratory virus for replication and virulence studies. This review covers the historical developments in the following areas: understanding the molecular basis of virulence; epidemiology and relatedness of different ND strains, both antigenically and genetically; the emergence of virulent strains and their relationship with viruses of low virulence; sequencing and understanding the viral genome and genes; the development of rapid molecular-based diagnostic tests; and the phylogeny and molecular taxonomy of ND virus. The authors suggest areas in which future research could or should be undertaken.


Asunto(s)
Genoma Viral/genética , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/epidemiología , Animales , Aves , Humanos , Enfermedad de Newcastle/diagnóstico , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/patogenicidad , Pandemias/veterinaria , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Virulencia/genética
6.
Avian Pathol ; 39(6): 453-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21154054

RESUMEN

The nucleotide sequence of the HN gene was determined for 21 isolates of avian paramyxovirus type 2 virus and compared with the published HN gene of APMV-2/chicken/California/Yucaipa/56. The HN gene of the 22 viruses had five different lengths in the range of 1737 to 1755 nucleotides coding for 579 to 585 amino acids. Phylogenetic analysis of a corresponding 1734-nucleotide sequence from the HN gene of each virus established five genetic groups (I to V), two of which (II and IV) could be divided into two sub-groups (IIa and IIb; and IVa and IVb). Although there were some exceptions, generally isolates placed in the same genetic group had >80% similarity in nucleotide sequence and <80% with the other isolates; while those in the same sub-group had >90% nucleotide sequence similarity.


Asunto(s)
Infecciones por Avulavirus/veterinaria , Avulavirus/genética , Avulavirus/aislamiento & purificación , Enfermedades de las Aves/virología , Hemaglutininas Virales/genética , Neuraminidasa/genética , Secuencia de Aminoácidos , Animales , Avulavirus/clasificación , Infecciones por Avulavirus/virología , Secuencia de Bases , Aves , Heterogeneidad Genética , Hemaglutininas Virales/química , Datos de Secuencia Molecular , Neuraminidasa/química , Filogenia , Reacción en Cadena de la Polimerasa
7.
J Virol ; 84(21): 11496-504, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20702635

RESUMEN

The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.


Asunto(s)
Avulavirus/clasificación , Avulavirus/aislamiento & purificación , Spheniscidae/virología , Secuencia de Aminoácidos , Animales , Islas Malvinas , Filogenia
8.
Arch Virol ; 155(6): 817-23, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20428904

RESUMEN

A real-time reverse-transcription PCR (rRT-PCR) that targets a region of the polymerase (L) gene was developed to detect all known lineages of avian paramyxovirus type 1 (APMV-1), also known as Newcastle disease virus (NDV). A panel of 23 viruses representing the current known phylogenetic diversity of the APMV-1 population with a bias towards the more recent European strains, which had been grown in embryonated fowls' eggs, were tested. A range of positive and negative clinical samples (n = 350) provided by the National Reference Laboratory and International Reference Laboratory at VLA Weybridge were also tested. Positive clinical material included samples considered representative of lineages 3, 4 and 5 obtained from chickens, ducks, pigeons and partridges. The negative sample population was obtained from chickens, turkeys and ducks. The APMV-1 L gene rRT-PCR gave high relative sensitivity (96.05%) and specificity (98.18%) when compared with virus isolation in embryonated fowls' eggs. It is proposed that this assay could provide a first-line screening tool for the detection of APMV-1 in clinical samples.


Asunto(s)
Enfermedad de Newcastle/diagnóstico , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Proteínas Virales/genética , Animales , Enfermedades de las Aves/diagnóstico , Enfermedades de las Aves/virología , Aves , Pollos , Virus de la Enfermedad de Newcastle/genética , Sondas de Oligonucleótidos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Sensibilidad y Especificidad
9.
Vet Microbiol ; 143(2-4): 139-44, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20018463

RESUMEN

Two pathogenetically different pigeon paramyxovirus type 1 (PPMV-1) virus clones were recently derived by passage of a single isolate with an intracerebral pathogenicity index (ICPI) of 0.32. The virus clones had an ICPI of 0.025 and 1.3, respectively (Fuller et al., 2007). Remarkably both viruses contained a cleavage site motif in the precursor fusion (F) protein that is usually associated with virulent viruses. In the current study, both viral genomes were completely sequenced and only four amino acid differences were observed. Of these, two were considered irrelevant on theoretical grounds and two amino acid changes were unique for virus 0.025. The latter were introduced into an infectious clone of a virulent Newcastle disease virus strain, individually and combined, and the effects of the mutations on pathogenicity were examined. The results indicate that only the S453P substitution in the F protein had a modest effect on pathogenicity. We were not able to identify the molecular basis for the pathogenicity difference between both viruses. However, our observations emphasize the need to determine both the virulence (ICPI) and the sequence of the cleavage site of the F protein to avoid dismissing of potential virulent PPMV-1 isolates.


Asunto(s)
Avulavirus/clasificación , Avulavirus/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Avulavirus/patogenicidad , Línea Celular , Pollos , Genoma Viral , Mutación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...