Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biosci ; 14(1): 74, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849850

RESUMEN

BACKGROUND: The glycolytic enzyme alpha-enolase is a known biomarker of many cancers and involved in tumorigenic functions unrelated to its key role in glycolysis. Here, we show that expression of alpha-enolase correlates with subcellular localisation and tumorigenic status in the MCF10 triple negative breast cancer isogenic tumour progression model, where non-tumour cells show diffuse nucleocytoplasmic localisation of alpha-enolase, whereas tumorigenic cells show a predominantly cytoplasmic localisation. Alpha-enolase nucleocytoplasmic localisation may be regulated by tumour cell-specific phosphorylation at S419, previously reported in pancreatic cancer. RESULTS: Here we show ENO1 phosphorylation can also be observed in triple negative breast cancer patient samples and MCF10 tumour progression cell models. Furthermore, prevention of alpha-enolase-S419 phosphorylation by point mutation or a casein kinase-1 specific inhibitor D4476, induced tumour-specific nuclear accumulation of alpha-enolase, implicating S419 phosphorylation and casein kinase-1 in regulating subcellular localisation in tumour cell-specific fashion. Strikingly, alpha-enolase nuclear accumulation was induced in tumour cells by treatment with the specific exportin-1-mediated nuclear export inhibitor Leptomycin B. This suggests that S419 phosphorylation in tumour cells regulates alpha-enolase subcellular localisation by inducing its exportin-1-mediated nuclear export. Finally, as a first step to analyse the functional consequences of increased cytoplasmic alpha-enolase in tumour cells, we determined the alpha-enolase interactome in the absence/presence of D4476 treatment, with results suggesting clear differences with respect to interaction with cytoskeleton regulating proteins. CONCLUSIONS: The results suggest for the first time that tumour-specific S419 phosphorylation may contribute integrally to alpha-enolase cytoplasmic localisation, to facilitate alpha-enolase's role in modulating cytoskeletal organisation in triple negative breast cancer. This new information may be used for development of triple negative breast cancer specific therapeutics that target alpha-enolase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA