Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833481

RESUMEN

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos , Hipotálamo , MicroARNs , Obesidad Materna , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Neuronas/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética
3.
Front Endocrinol (Lausanne) ; 13: 1078955, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619540

RESUMEN

As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.


Asunto(s)
Obesidad Materna , Animales , Femenino , Embarazo , Humanos , Obesidad Materna/metabolismo , Obesidad/metabolismo , Aumento de Peso , Madres , Hipotálamo/metabolismo
4.
Endocrinology ; 162(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402859

RESUMEN

Previous studies indicate that leptin receptor (LepR) expression in GABAergic neurons is necessary for the biological effects of leptin. However, it is not clear whether LepR expression only in GABAergic neurons is sufficient to prevent the metabolic and neuroendocrine imbalances caused by LepR deficiency. In the present study, we produced mice that express the LepR exclusively in GABAergic cells (LepRVGAT mice) and compared them with wild-type (LepR+/+) and LepR-deficient (LepRNull/Null) mice. Although LepRVGAT mice showed a pronounced reduction in body weight and fat mass, as compared with LepRNull/Null mice, male and female LepRVGAT mice exhibited an obese phenotype relative to LepR+/+ mice. Food intake was normalized in LepRVGAT mice; however, LepRVGAT mice still exhibited lower energy expenditure in both sexes and reduced ambulatory activity in the females, compared with LepR+/+ mice. The acute anorexigenic effect of leptin and hedonic feeding were normalized in LepRVGAT mice despite the hyperleptinemia they present. Although LepRVGAT mice showed improved glucose homeostasis compared with LepRNull/Null mice, both male and female LepRVGAT mice exhibited insulin resistance. In contrast, LepR expression only in GABAergic cells was sufficient to normalize the density of agouti-related peptide (AgRP) and α-MSH immunoreactive fibers in the paraventricular nucleus of the hypothalamus. However, LepRVGAT mice exhibited reproductive dysfunctions, including subfertility in males and alterations in the estrous cycle of females. Taken together, our findings indicate that LepR expression in GABAergic cells, although critical to the physiology of leptin, is insufficient to normalize several metabolic aspects and the reproductive function in mice.


Asunto(s)
Metabolismo Energético/genética , Neuronas GABAérgicas/metabolismo , Receptores de Leptina/genética , Reproducción/genética , Animales , Femenino , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores de Leptina/metabolismo
5.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911072

RESUMEN

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Interleucina-6 , Ratones , Placa Amiloide
6.
Cells ; 10(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440789

RESUMEN

Growth hormone (GH) is secreted by the pituitary gland, and in addition to its classical functions of regulating height, protein synthesis, tissue growth, and cell proliferation, GH exerts profound effects on metabolism. In this regard, GH stimulates lipolysis in white adipose tissue and antagonizes insulin's effects on glycemic control. During the last decade, a wide distribution of GH-responsive neurons were identified in numerous brain areas, especially in hypothalamic nuclei, that control metabolism. The specific role of GH action in different neuronal populations is now starting to be uncovered, and so far, it indicates that the brain is an important target of GH for the regulation of food intake, energy expenditure, and glycemia and neuroendocrine changes, particularly in response to different forms of metabolic stress such as glucoprivation, food restriction, and physical exercise. The objective of the present review is to summarize the current knowledge about the potential role of GH action in the brain for the regulation of different metabolic aspects. The findings gathered here allow us to suggest that GH represents a hormonal factor that conveys homeostatic information to the brain to produce metabolic adjustments in order to promote energy homeostasis.


Asunto(s)
Hormona del Crecimiento/metabolismo , Metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glucosa/metabolismo , Humanos , Neuronas/metabolismo , Receptores de Somatotropina/metabolismo
7.
Peptides ; 135: 170426, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069692

RESUMEN

The hypothalamus mediates important exercise-induced metabolic adaptations, possibly via hormonal signals. Hypothalamic leptin receptor (LepR)- and steroidogenic factor 1 (SF1)-expressing neurons are directly responsive to growth hormone (GH) and deletion of GH receptor (GHR) in these cells impairs neuroendocrine responses during situations of metabolic stress. In the present study, we determined whether GHR ablation in LepR- or SF1-expressing cells modifies acute and chronic metabolic adaptations to exercise. Male mice carrying deletion of GHR in LepR- or SF1-expressing cells were submitted to 8 weeks of treadmill running training. Changes in aerobic performance and exercise-induced metabolic adaptations were determined. Mice carrying GHR deletion in LepR cells showed increased aerobic performance after 8 weeks of treadmill training, whereas GHR ablation in SF1 cells prevented improvement in running capacity. Trained mice carrying GHR ablation in SF1 cells exhibited increased fat mass and reduced cross-sectional area of the gastrocnemius muscle. In contrast, deletion of GHR in LepR cells reduced fat mass and increased gastrocnemius muscle hypertrophy, energy expenditure and voluntary locomotor activity in trained mice. Although glucose tolerance was not significantly affected by targeted deletions, glycemia before and immediately after maximum running tests was altered by GHR ablation. In conclusion, GHR signaling in hypothalamic neurons regulates the adaptation capacity to aerobic exercise in a cell-specific manner. These findings suggest that GH may represent a hormonal cue that informs specific hypothalamic neurons to produce exercise-induced acute and chronic metabolic adaptations.


Asunto(s)
Ejercicio Físico/fisiología , Condicionamiento Físico Animal , Receptores de Leptina/genética , Receptores de Somatotropina/genética , Factor Esteroidogénico 1/genética , Adaptación Fisiológica/genética , Animales , Metabolismo Energético/genética , Regulación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/genética , Locomoción/genética , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Neuronas/metabolismo
8.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317389

RESUMEN

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genética
9.
Neuroscience ; 434: 136-147, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32229232

RESUMEN

The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). The objective of the present study was to determine whether a direct action of GH on ARH neurons regulates the density of POMC and AgRP axonal projections to major postsynaptic targets. We studied POMC and AgRP axonal projections to the hypothalamic paraventricular (PVH), lateral (LHA) and dorsomedial (DMH) nuclei in leptin receptor (LepR)-deficient mice (Leprdb/db), GH-deficient mice (Ghrhrlit/lit) and in mice carrying specific ablations of GH receptor (GHR) either in LepR- or AgRP-expressing cells. Leprdb/db mice presented reduction in the density of POMC innervation to the PVH compared to wild-type and Ghrhrlit/lit mice. Additionally, both Leprdb/db and Ghrhrlit/lit mice showed reduced AgRP fiber density in the PVH, LHA and DMH. LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Receptores de Somatotropina , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Somatotropina/genética
10.
J Mol Endocrinol ; 64(1): 13-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756168

RESUMEN

AgRP neurons are important players in the control of energy homeostasis and are responsive to several hormones. In addition, STAT5 signalling in the brain, which is activated by metabolic hormones and growth factors, modulates food intake, body fat and glucose homeostasis. Given that, and the absence of studies that describe STAT5 function in AgRP cells, the present study investigated the metabolic effects of Stat5a/b gene ablation in these neurons. We observed that STAT5 signalling in AgRP neurons regulates body fat in female mice. However, male and female STAT5-knockout mice did not exhibit altered food intake, energy expenditure or glucose homeostasis compared to control mice. The counter-regulatory response or glucoprivic hyperphagia induced by 2-deoxy-d-glucose treatment were also not affected by AgRP-specific STAT5 ablation. However, under 60% food restriction, AgRP STAT5-knockout mice had a blunted upregulation of hypothalamic Agrp mRNA expression and corticosterone serum levels compared to control mice, suggesting a possible role for STAT5 in AgRP neurons for neuroendocrine adaptations to food restriction. Interestingly, ad libitum fed knockout male mice had reduced Pomc and Ucp-1 mRNA expression compared to control group. Taken together, these results suggest that STAT5 signalling in AgRP neurons regulates body adiposity in female mice, as well as some neuroendocrine adaptations to food restriction.


Asunto(s)
Adaptación Fisiológica/fisiología , Adiposidad/fisiología , Proteína Relacionada con Agouti/metabolismo , Metabolismo Energético/fisiología , Neuronas/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Ingestión de Alimentos/fisiología , Femenino , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba/fisiología
11.
Endocrinology ; 160(12): 2903-2917, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31599926

RESUMEN

Several metabolic and behavioral adaptations that emerge during pregnancy remain present after weaning. Thus, reproductive experience causes long-lasting metabolic programming, particularly in the brain. However, the isolate effects of pregnancy or lactation and the molecular mechanisms involved in these long-term modifications are currently unknown. In the current study, we investigated the role of brain signal transducer and activator of transcription-5 (STAT5), a key transcription factor recruited by hormones highly secreted during gestation or lactation, for the long-term adaptations induced by reproductive experience. In control mice, pregnancy followed by lactation led to increased body adiposity and reduced ambulatory activity later in life. Additionally, pregnancy+lactation induced long-term epigenetic modifications in the brain: we observed upregulation in hypothalamic expression of histone deacetylases and reduced numbers of neurons with histone H3 acetylation in the paraventricular, arcuate, and ventromedial nuclei. Remarkably, brain-specific STAT5 ablation prevented all metabolic and epigenetic changes observed in reproductively experienced control female mice. Nonetheless, brain-specific STAT5 knockout (KO) mice that had the experience of pregnancy but did not lactate showed increased body weight and reduced energy expenditure later in life, whereas pregnancy KO and pregnancy+lactation KO mice exhibited improved insulin sensitivity compared with virgin KO mice. In summary, lactation is necessary for the long-lasting metabolic effects observed in reproductively experienced female mice. In addition, epigenetic mechanisms involving histone acetylation in neuronal populations related to energy balance regulation are possibly associated with these long-term consequences. Finally, our findings highlighted the key role played by brain STAT5 signaling for the chronic metabolic and epigenetic changes induced by pregnancy and lactation.


Asunto(s)
Hipotálamo/metabolismo , Lactancia , Preñez/metabolismo , Factor de Transcripción STAT5/metabolismo , Adiposidad , Animales , Epigénesis Genética , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Embarazo , Distribución Aleatoria
12.
Mol Cell Endocrinol ; 498: 110574, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494175

RESUMEN

Several hypothalamic neuronal populations are directly responsive to growth hormone (GH) and central GH action regulates glucose and energy homeostasis. However, the potential role of GH signaling in proopiomelanocortin (POMC) neurons has not been studied yet. Thus, we investigated whether POMC neurons are responsive to GH and if ablation of GH receptor (GHR) or STAT5 in POMC cells leads to metabolic imbalances. Approximately 60% of POMC neurons of the arcuate nucleus exhibited STAT5 phosphorylation after intracerebroventricular GH injection. Ablation of GHR or STAT5 in POMC cells did not affect energy or glucose homeostasis. However, glucoprivic hyperphagia was blunted in male and female GHR knockout mice, and in male POMC-specific STAT5 knockout mice. Additionally, the absence of GHR in POMC neurons decreased glycemia during prolonged food restriction in male mice. Thus, GH action in POMC neurons regulates glucoprivic hyperphagia as well as blood glucose levels during prolonged food restriction.


Asunto(s)
Proteínas Portadoras/fisiología , Glucosa/metabolismo , Hiperfagia/patología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Factor de Transcripción STAT5/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Femenino , Hiperfagia/metabolismo , Masculino , Ratones , Ratones Noqueados
13.
Am J Physiol Endocrinol Metab ; 317(5): E925-E940, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479305

RESUMEN

The maternal organism undergoes numerous metabolic adaptations to become prepared for the demands associated with the coming offspring. These metabolic adaptations involve changes induced by several hormones that act at multiple levels, ultimately influencing energy and glucose homeostasis during pregnancy and lactation. Previous studies have shown that central growth hormone (GH) action modulates glucose and energy homeostasis. However, whether central GH action regulates metabolism during pregnancy and lactation is still unknown. In the present study, we generated mice carrying ablation of GH receptor (GHR) in agouti-related protein (AgRP)-expressing neurons, in leptin receptor (LepR)-expressing cells or in the entire brain to investigate the role played by central GH action during pregnancy and lactation. AgRP-specific GHR ablation led to minor metabolic changes during pregnancy and lactation. However, while brain-specific GHR ablation reduced food intake and body adiposity during gestation, LepR GHR knockout (KO) mice exhibited increased leptin responsiveness in the ventromedial nucleus of the hypothalamus during late pregnancy, although their offspring showed reduced growth rate. Additionally, both Brain GHR KO and LepR GHR KO mice had lower glucose tolerance and glucose-stimulated insulin secretion during pregnancy, despite presenting increased insulin sensitivity, compared with control pregnant animals. Our findings revealed that during pregnancy central GH action regulates food intake, fat retention, as well as the sensitivity to insulin and leptin in a cell-specific manner. Together, the results suggest that GH acts in concert with other "gestational hormones" to prepare the maternal organism for the metabolic demands of the offspring.


Asunto(s)
Hormona del Crecimiento/fisiología , Preñez/metabolismo , Adiposidad/genética , Animales , Química Encefálica/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ingestión de Alimentos , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/genética , Leptina/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Embarazo , Receptores de Leptina/metabolismo
14.
J Endocrinol ; 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31470413

RESUMEN

Growth hormone (GH) is a key factor in the regulation of body growth, as well as a variety of other cellular and metabolic processes. Neurons expressing kisspeptin and leptin receptors (LepR) have been shown to modulate the hypothalamic-pituitary-gonadal (HPG) axis and are considered GH-responsive. The presence of functional GH receptors (GHR) in these neural populations suggests that GH may regulate the HPG axis via a central mechanism. However, there have been no studies evaluating whether or not GH-induced intracellular signaling in the brain plays a role in the timing of puberty or mediates the ovulatory cycle. Towards the goal of understanding the influence of GH on the central nervous system as a mediator of reproductive functions, GHR ablation was induced in kisspeptin and LepR expressing cells or in the entire brain. The results demonstrated that GH signaling in specific neural populations can potentially modulate the hypothalamic expression of genes related to the reproductive system or indirectly contribute to the progression of puberty. GH action in kisspeptin cells or in the entire brain was not required for sexual maturation. On the other hand, GHR ablation in LepR cells delayed puberty progression, reduced serum leptin levels, decreased body weight gain and compromised the ovulatory cycle in some individuals, while the lack of GH effects in the entire brain prompted shorter estrous cycles. These findings suggest that GH can modulate brain components of the HPG axis, although central GH signaling is not required for the timing of puberty.

15.
FASEB J ; 33(11): 11909-11924, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31366244

RESUMEN

Growth hormone (GH) is secreted during hypoglycemia, and GH-responsive neurons are found in brain areas containing glucose-sensing neurons that regulate the counter-regulatory response (CRR). However, whether GH modulates the CRR to hypoglycemia via specific neuronal populations is currently unknown. Mice carrying ablation of GH receptor (GHR) either in leptin receptor (LepR)- or steroidogenic factor-1 (SF1)-expressing cells were studied. We also investigated the importance of signal transducer and activator of transcription 5 (STAT5) signaling in SF1 cells for the CRR. GHR ablation in LepR cells led to impaired capacity to recover from insulin-induced hypoglycemia and to a blunted CRR caused by 2-deoxy-d-glucose (2DG) administration. GHR inactivation in SF1 cells, which include ventromedial hypothalamic neurons, also attenuated the CRR. The reduced CRR was prevented by parasympathetic blockers. Additionally, infusion of 2DG produced an abnormal hyperactivity of parasympathetic preganglionic neurons, whereas the 2DG-induced activation of anterior bed nucleus of the stria terminalis neurons was reduced in mice without GHR in SF1 cells. Mice carrying ablation of Stat5a/b genes in SF1 cells showed no defects in the CRR. In summary, GHR expression in SF1 cells is required for a normal CRR, and these effects are largely independent of STAT5 pathway.-Furigo, I. C., de Souza, G. O., Teixeira, P. D. S., Guadagnini, D., Frazão, R., List, E. O., Kopchick, J. J., Prada, P. O., Donato, J., Jr. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons.


Asunto(s)
Hormona del Crecimiento/farmacología , Hipoglucemia/tratamiento farmacológico , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Animales , Desoxiglucosa/farmacología , Hipoglucemia/fisiopatología , Hipotálamo/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
16.
J Comp Neurol ; 527(18): 3046-3072, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199515

RESUMEN

The laterodorsal tegmental nucleus (LDTg) is a hindbrain cholinergic cell group thought to be involved in mechanisms of arousal and the control of midbrain dopamine cells. Nowadays, there is increasing evidence that LDTg is also engaged in mechanisms of anxiety/fear and promotion of emotional arousal under adverse conditions. Interestingly, LDTg appears to be connected with other regulators of aversive motivational states, including the lateral habenula (LHb), medial habenula (MHb), interpeduncular nucleus (IP), and median raphe nucleus (MnR). However, the circuitry between these structures has hitherto not been systematically investigated. Here, we placed injections of retrograde or anterograde tracers into LDTg, LHb, IP, and MnR. We also examined the transmitter phenotype of LDTg afferents to IP by combining retrograde tracing with immunofluorescence and in situ hybridization techniques. We found LHb inputs to LDTg mainly emerging from the medial division of the LHb (LHbM), which also receives axonal input from LDTg. The bidirectional connections between IP and LDTg displayed a lateralized organization, with LDTg inputs to IP being predominantly GABAergic or cholinergic and mainly directed to the contralateral IP. Moreover, we disclosed reciprocal LDTg connections with structures involved in the modulation of hippocampal theta rhythm including MnR, nucleus incertus, and supramammillary nucleus. Our findings indicate that the habenula is linked with LDTg either by direct reciprocal projections from/to LHbM or indirectly via the MHb-IP axis, supporting a functional role of LDTg in the regulation of aversive behaviors, and further characterizing LHb as a master controller of ascending brainstem state-setting modulatory projection systems.


Asunto(s)
Habénula/fisiología , Núcleo Interpeduncular/fisiología , Núcleos del Rafe/fisiología , Rombencéfalo/fisiología , Animales , Habénula/química , Núcleo Interpeduncular/química , Masculino , Vías Nerviosas/química , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Núcleos del Rafe/química , Ratas , Ratas Wistar , Rombencéfalo/química
17.
Brain Res ; 1714: 210-217, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30851245

RESUMEN

Growth hormone (GH) and prolactin (PRL) are known as pleiotropic hormones. Accordingly, the distribution of their receptors comprises several organs and tissues, including the central nervous system. The appropriate secretion of both hormones is essential for sexual maturation and maintenance of reproductive functions, while defects in their secretion affect puberty onset and can cause infertility. Conversely, GH therapy at a prepubertal age may accelerate puberty. On the other hand, hyperprolactinemia is a frequent cause of infertility. While the action of PRL in some central components of the Hypothalamic-Pituitary-Gonadal (HPG) axis, such as the kisspeptin neurons, has been well documented, the possible effects of GH in the hypothalamus are still elusive. Thus, the present study was designed to investigate whether somatomammotropin hormones are able to modulate the activity of critical neuronal components of the HPG axis, including kisspeptin neurons and cells of the ventral premammillary nucleus (PMv). Our results revealed that GH effects in kisspeptin neurons of the anteroventral periventricular and rostral periventricular nuclei or in PMv neurons relies predominantly on the recruitment of the signal transducer and activator of transcription 5 (STAT5) rather than through acute changes in resting membrane potential. Importantly, kisspeptin neurons located at the arcuate nucleus were not directly responsive to GH. Additionally, our findings further identified PMv neurons as potential targets of PRL, since PRL induces the phosphorylation of STAT5 and depolarizes PMv neurons. Combined, our data provide evidence that GH and PRL may affect the HPG axis via specific hypothalamic neurons.


Asunto(s)
Hormona del Crecimiento/metabolismo , Prolactina/metabolismo , Maduración Sexual/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Gónadas/metabolismo , Hormona del Crecimiento/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fosforilación , Sistema Hipófiso-Suprarrenal/metabolismo , Prolactina/fisiología , Factor de Transcripción STAT5/metabolismo
18.
Nat Commun ; 10(1): 980, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804339

RESUMEN

The original version of this Article contained an error in the spelling of the author J. Donato Jr, which was incorrectly given as Donato J. Jr. This has now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 10(1): 662, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737388

RESUMEN

Weight loss triggers important metabolic responses to conserve energy, especially via the fall in leptin levels. Consequently, weight loss becomes increasingly difficult with weight regain commonly occurring in most dieters. Here we show that central growth hormone (GH) signaling also promotes neuroendocrine adaptations during food deprivation. GH activates agouti-related protein (AgRP) neurons and GH receptor (GHR) ablation in AgRP cells mitigates highly characteristic hypothalamic and metabolic adaptations induced by weight loss. Thus, the capacity of mice carrying an AgRP-specific GHR ablation to save energy during food deprivation is impaired, leading to increased fat loss. Additionally, administration of a clinically available GHR antagonist (pegvisomant) attenuates the fall of whole-body energy expenditure of food-deprived mice, similarly as seen by leptin treatment. Our findings indicate GH as a starvation signal that alerts the brain about energy deficiency, triggering key adaptive responses to conserve limited fuel stores.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Receptores de Somatotropina/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Hormona de Crecimiento Humana/análogos & derivados , Hormona de Crecimiento Humana/uso terapéutico , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Somatotropina/genética , Pérdida de Peso/efectos de los fármacos
20.
Elife ; 82019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30694175

RESUMEN

Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Leptina/genética , Obesidad/genética , Receptores de Leptina/genética , Envejecimiento/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Metabolismo Energético/genética , Femenino , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Gónadas/patología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hipotálamo/patología , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Obesidad/metabolismo , Obesidad/patología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Hormona Liberadora de Prolactina/genética , Hormona Liberadora de Prolactina/metabolismo , Receptores de Leptina/deficiencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA