Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118301, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352633

RESUMEN

The establishment of sustainable, low-intensity fire regimes is a pressing global challenge given escalating risk of wildfire driven by climate change. Globally, colonialism and industrialisation have disrupted traditional fire management, such as Indigenous patch burning and silvo-pastoral practices, leading to substantial build-up of fuel and increased fire risk. The disruption of fire regimes in southeastern Tasmania has led to dense even-aged regrowth in wet forests that are prone to crown fires, and dense Allocasuarina-dominated understoreys in dry forests that burn at high intensities. Here, we investigated the effectiveness of several fire management interventions at reducing fire risk. These interventions involved prescribed burning or mechanical understorey removal techniques. We focused on wet and dry Eucalyptus-dominated sclerophyll forests on the slopes of kunanyi/Mt. Wellington in Hobart, Tasmania, Australia. We modelled potential fire behaviour in these treated wet and dry forests using fire behaviour equations based on measurements of fuel load, vegetation structure, understorey microclimate and regional meteorological data. We found that (a) fuel treatments were effective in wet and dry forests in reducing fuel load, though each targeted different layers, (b) both mechanical treatments and prescribed burning resulted in slightly drier, and hence more fire prone understorey microclimate, and (c) all treatments reduced predicted subsequent fire severity by roughly 2-4 fold. Our results highlight the importance of reducing fuel loads, even though fuel treatments make forest microclimates drier, and hence fuel more flammable. Our finding of the effectiveness of mechanical treatments in lowering fire risk enables managers to reduce fuels without the risk of uncontrolled fires and smoke pollution that is associated with prescribed burning. Understanding the economic and ecological costs and benefits of mechanic treatment compared to prescribed burning requires further research.


Asunto(s)
Incendios , Incendios Forestales , Australia , Bosques , Tasmania , Ecosistema
2.
Ambio ; 51(11): 2214-2226, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35608727

RESUMEN

Savanna fire management is a topic of global debate, with early dry season burning promoted as a large-scale emissions reduction opportunity. To date, discussions have centred on carbon abatement efficacy, biodiversity and cultural benefits and/or risks. Here we use a case study of Darwin, Australia to highlight smoke pollution as another critical consideration. Smoke pollution from savanna fires is a major public health issue, yet absent so far from discussions of program design. Here, we assess the likely impacts of increased early dry season burning on smoke pollution in Darwin between 2004 and 2019, spanning the introduction and expansion of carbon abatement programs. We found increased smoke pollution in the early dry season but little change in the late dry season, contributing to a net annual increase in air quality standard exceedances. Geospatial analysis suggests this relates to increased burning in the path of early dry season trade winds. This study highlights the complex health trade-offs involved with any large-scale prescribed burning, including for carbon abatement.


Asunto(s)
Contaminación del Aire/prevención & control , Carbono , Incendios , Humo/efectos adversos , Carbono/análisis , Pradera , Northern Territory
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...