Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38700127

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Carbon Isotopes , Charadriiformes , Feathers , Nitrogen Isotopes , Sulfur Isotopes , Animals , Feathers/chemistry , Sulfur Isotopes/analysis , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Charadriiformes/physiology , Charadriiformes/metabolism , Mass Spectrometry/methods
2.
Ecol Evol ; 11(13): 8923-8940, 2021 Jul.
Article En | MEDLINE | ID: mdl-34257936

It has often been suggested that the productivity of an ecosystem affects the number of species that it can support. Despite decades of study, the nature, extent, and underlying mechanisms of this relationship are unclear. One suggested mechanism is the "more individuals" hypothesis (MIH). This proposes that productivity controls the number of individuals in the ecosystem, and that more individuals can be divided into a greater number of species before their population size is sufficiently small for each to be at substantial risk of extinction. Here, we test this hypothesis using REvoSim: an individual-based eco-evolutionary system that simulates the evolution and speciation of populations over geological time, allowing phenomena occurring over timescales that cannot be easily observed in the real world to be evaluated. The individual-based nature of this system allows us to remove assumptions about the nature of speciation and extinction that previous models have had to make. Many of the predictions of the MIH are supported in our simulations: Rare species are more likely to undergo extinction than common species, and species richness scales with productivity. However, we also find support for relationships that contradict the predictions of the strict MIH: species population size scales with productivity, and species extinction risk is better predicted by relative than absolute species population size, apparently due to increased competition when total community abundance is higher. Furthermore, we show that the scaling of species richness with productivity depends upon the ability of species to partition niche space. Consequently, we suggest that the MIH is applicable only to ecosystems in which niche partitioning has not been halted by species saturation. Some hypotheses regarding patterns of biodiversity implicitly or explicitly overlook niche theory in favor of neutral explanations, as has historically been the case with the MIH. Our simulations demonstrate that niche theory exerts a control on the applicability of the MIH and thus needs to be accounted for in macroecology.

3.
Proc Biol Sci ; 288(1949): 20210240, 2021 04 28.
Article En | MEDLINE | ID: mdl-33878917

There is significant geographic variation in species richness. However, the nature of the underlying relationships, such as that between species richness and environmental stability, remains unclear. The stability-time hypothesis suggests that environmental instability reduces species richness by suppressing speciation and increasing extinction risk. By contrast, the patch-mosaic hypothesis suggests that small-scale environmental instability can increase species richness by providing a steady supply of non-equilibrium environments. Although these hypotheses are often applied to different time scales, their core mechanisms are in conflict. Reconciling these apparently competing hypotheses is key to understanding how environmental conditions shape the distribution of biodiversity. Here, we use REvoSim, an individual-based, eco-evolutionary system, to model the evolution of sessile organisms in environments with varying magnitudes and scales of environmental instability. We demonstrate that when environments have substantial permanent heterogeneity, a high level of localized environmental instability reduces biodiversity, whereas in environments lacking permanent heterogeneity, high levels of localized instability increase biodiversity. By contrast, broad-scale environmental instability, acting on the same time scale, invariably reduces biodiversity. Our results provide a new view of the biodiversity-disturbance relationship that reconciles contrasting hypotheses within a single model and implies constraints on the environmental conditions under which those hypotheses apply. These constraints can inform attempts to conserve adaptive potential in different environments during the current biodiversity crisis.


Biodiversity
4.
Sci Rep ; 11(1): 4921, 2021 03 01.
Article En | MEDLINE | ID: mdl-33649392

Masting behaviour of Sitka spruce Picea sitchensis may influence Eurasian siskin Spinus spinus breeding ecology as breeding siskins specialize on spruce seeds. We caught siskins and other small passerines over 16 years using mist nets adjacent to large plantations of mature Sitka spruce. We sexed, aged, measured and weighed the birds and collected feather samples from fledglings to measure nitrogen and carbon stable isotope ratios. Siskins departed in late summer, and returned, and bred earlier in years of higher cone abundance. Nitrogen and carbon isotopes indicated that siskins fed their chicks on Sitka spruce seeds in most years, and more so in years of high cone production. More siskins were caught following heavy rainfall, when the cones had closed, encouraging the birds to seek alternative food sources. Fledglings were not heavier or larger in years with higher cone crops but were more numerous. However, the age ratio of siskins caught the following year was unaffected by cone crop. Given their reliance on Sitka spruce seeds, climate change may have a major impact on siskin numbers by altering the availability of Sitka spruce seeds, either through changes in masting patterns or cone opening, or due to climate-related changes in forestry practices. Siskins represent a valuable study system to conservation ecology, where a native species is ecologically reliant on introduced taxa.

5.
Ecol Evol ; 9(3): 1202-1210, 2019 Feb.
Article En | MEDLINE | ID: mdl-30805153

The optimum body mass of passerine birds typically represents a trade-off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK-wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long-term, UK-wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large-scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes.

6.
J Vector Ecol ; 43(1): 59-62, 2018 06.
Article En | MEDLINE | ID: mdl-29757511

Increasing winter temperatures are expected to cause seasonal activity of Ixodes ricinus ticks to extend further into the winter. We caught birds during winter months (November to February) at a site in the west of Scotland over a period of 24 years (1993-1994 to 2016-2017) to quantify numbers of attached I. ricinus and to relate these to monthly mean temperature. No adult ticks were found on any of the 21,731 bird captures, but 946 larvae and nymphs were found, with ticks present in all winter months, on 16 different species of bird hosts. All ticks identified to species were I. ricinus. I. ricinus are now active throughout the year in this area providing temperature permits. No I. ricinus were present in seven out of eight months when the mean temperature was below 3.5º C. Numbers of I. ricinus attached to birds increased rapidly with mean monthly temperatures above 7º C. Winter temperatures in Scotland have been above the long-term average in most years in the last two decades, and this is likely to increase risk of tick-borne disease.


Ixodes/pathogenicity , Animals , Birds/parasitology , Seasons , Temperature
...