Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(12): 6129-6137, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470355

RESUMEN

Diffusing wave spectroscopy (DWS) is used to measure the dynamics of charged silica particles between the volume fractions 0.065 ≤ ϕ ≤ 0.352 (weight percentages from 12.7 to 55.8 wt %). The short-time diffusivity averaged over the scattering vectors sampled by DWS D¯(ϕ) decreases with an increasing concentration. An effective hard-sphere model that accounts for hydrodynamic interactions and a double-layer repulsion fits the values up to an effective volume fraction ϕeff=ϕb^3≈0.6, where b^ is the excluded shell radius normalized by the particle radius b^ = b/a = 1.3. While DWS measurements of diffusivity are sensitive to repulsive interactions, we show that they are relatively insensitive to attraction, such as those due to secondary minima in the interaction potential or weak depletion interaction.

2.
Biomacromolecules ; 25(1): 338-348, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38117685

RESUMEN

Proteins are exposed to hydrostatic pressure (HP) in a variety of ecosystems as well as in processing steps such as freeze-thaw, cell disruption, sterilization, and homogenization, yet pressure effects on protein-protein interactions (PPIs) remain underexplored. With the goal of contributing toward the expanded use of HP as a fundamental control parameter in protein research, processing, and engineering, small-angle X-ray scattering was used to examine the effects of HP and ionic strength on ovalbumin, a model protein. Based on an extensive data set, we develop an empirical method for scaling PPIs to a master curve by combining HP and osmotic effects. We define an effective pressure parameter that has been shown to successfully apply to other model protein data available in the literature, with deviations evident for proteins that do not follow the apparent Hofmeister series. The limitations of the empirical scaling are discussed in the context of the hypothesized underlying mechanisms.


Asunto(s)
Ecosistema , Proteínas , Concentración Osmolar , Ovalbúmina , Fenómenos Biofísicos
3.
ACS Nano ; 17(19): 19224-19231, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37756140

RESUMEN

Phononic materials exhibit mechanical properties that alter the propagation of acoustic waves and are widely useful for metamaterials. To fabricate acoustic materials with phononic bandgaps, colloidal nanoparticles and their assemblies allow access to various crystallinities in the submicrometer scale. We fabricated anisotropic crystals with dumbbell-shaped nanoparticles via field-directed self-assembly. Brillouin light spectroscopy detected the formation of direction-dependent hypersonic phononic bandgaps that scale with the lattice parameters. In addition, the local resonances of the constituent nanoparticles enable metamaterial behavior by opening hybridization gaps in disordered structures. Unexpectedly, this bandgap frequency is robust to changes in the dumbbell aspect ratio. Overall, this study provides a structure-property relationship for designing anisotropic phononic materials with targeted phononic bandgaps.

4.
Langmuir ; 39(22): 7775-7782, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37222141

RESUMEN

When monoclonal antibodies are exposed to an air-water interface, they form aggregates, which negatively impacts their performance. Until now, the detection and characterization of interfacial aggregation have been difficult. Here, we exploit the mechanical response imparted by interfacial adsorption by measuring the interfacial shear rheology of a model antibody, anti-streptavidin immunoglobulin-1 (AS-IgG1), at the air-water interface. Strong viscoelastic layers of AS-IgG1 form when the protein is adsorbed from the bulk solution. Creep experiments correlate the compliance of the interfacial protein layer with the subphase solution pH and bulk concentration. These, along with oscillatory strain amplitude and frequency sweeps, show that the viscoelastic behavior of the adsorbed layers is that of a soft glass with interfacial shear moduli on the order of 10-3 Pa m. Shifting the creep compliance curves under different applied stresses forms master curves consistent with stress-time superposition of soft interfacial glasses. The interfacial rheology results are discussed in the context of the interface-mediated aggregation of AS-IgG1.

5.
Phys Rev Lett ; 128(4): 048003, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148122

RESUMEN

The vibrational eigenmodes of dumbbell-shaped polystyrene nanoparticles are recorded by Brillouin light spectroscopy (BLS), and the full experimental spectra are calculated theoretically. Different from spheres with a degeneracy of (2l+1), with l being the angular momentum quantum number, the eigenmodes of dumbbells are either singly or doubly degenerate owing to their axial symmetry. The BLS spectrum reveals a new, low-frequency peak, which is attributed to the out-of-phase vibration of the two lobes of the dumbbell. The quantization of acoustic modes in these molecule-shaped dumbbell particles evolves from the primary colloidal spheres as the separation between the two lobes increases.

6.
Phys Rev Lett ; 128(1): 018003, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061484

RESUMEN

We investigate the origin of yield stress aging in semidense, saline, and turbid suspensions in which structural evolution is rapidly arrested by the formation of thermally irreversible roll-resisting interparticle contacts. By performing optical tweezer three-point bending tests on particle rods, we show that these contacts yield by overcoming a rolling threshold, the critical bending moment of which grows logarithmically with time. We demonstrate that this time-dependent contact-scale rolling threshold controls the suspension yield stress and its aging kinetics. We identify a simple constitutive relation between the contact-scale flexural rigidity and rolling threshold, which transfers to macroscopic scales. This leads us to establishing a constitutive relation between macroscopic shear modulus and yield stress that is generic for an array of colloidal systems.

7.
Phys Rev E ; 106(6-1): 064609, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671116

RESUMEN

We calculate the effect of particle size, concentration, and interactions on the photon transport mean-free path l^{*} that characterizes the multiple light scattering in diffusing wave spectroscopy (DWS). For scatterers of sufficient size, such that the first peak of the suspension structure factor S(q_{max}) remains in the range of accessible scattering vectors, neither repulsive nor attractive interactions between scatterers contribute strongly to l^{*}; its values are bounded by those for hard spheres and scatterers without interactions. However, for scatterers smaller than the wavelength of light, crowding induced by attraction or repulsion can lead to nonmonotonic behavior in l^{*} with increasing scatterer concentration. The effect is strongest for repulsive particles.


Asunto(s)
Análisis Espectral , Análisis Espectral/métodos , Difusión , Tamaño de la Partícula
8.
J Pharm Sci ; 110(3): 1083-1092, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33271135

RESUMEN

Non-native protein aggregation is a common concern for biopharmaceuticals. A given protein may aggregate through a variety of mechanisms that depend on solution and physico-chemical stress conditions. A thorough evaluation of aggregation behavior for a protein under all conditions of interest is necessary to ensure drug safety and efficacy. This work introduces a rapid, small-volume approach to evaluate protein aggregation propensity upon exposure to air-water interfaces (AWI). A microtensiometer apparatus is used to aerate a small volume of a protein solution with microbubbles for short periods of time (≤10 s). Sub-visible particles that form are captured and analyzed using backgrounded membrane imaging. This allows one to capture all particles in the solution while being sample sparing. The surface-mediated aggregation of two model monoclonal antibodies (MAbs) and a globular protein (aCgn) was tested as a function of pH and temperature. Temperature had a negligible effect under the rapid interface turnover time scales with this technique. Electrostatic protein-protein interactions, mediated by pH changes, were more influential for particle formation via AWI. Nonionic surfactants substantially reduced particle formation for all MAb solutions, but not aCgn. The results are contrasted with expectations when exposing samples to much larger air-water interfacial stress.


Asunto(s)
Agregado de Proteínas , Agua , Anticuerpos Monoclonales
9.
Mol Pharm ; 17(12): 4473-4482, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33170708

RESUMEN

Protein solution viscosity (η) as a function of temperature was measured at a series of protein concentrations under a range of formulation conditions for two monoclonal antibodies (MAbs) and a globular protein (aCgn). Based on theoretical arguments, a strong temperature dependence for protein-protein interactions (PPI) indicates highly anisotropic, short-ranged attractions that could lead to higher solution viscosities. The semi-empirical Ross-Minton model was used to determine the apparent intrinsic viscosity, shape, and "crowding" factors for each protein as a function of temperature and formulation conditions. The apparent intrinsic viscosity was independent of temperature for aCgn, while a slight decrease with increasing temperature was observed for the MAbs. The temperature dependence of solution viscosity was analyzed using the Andrade-Eyring equation to determine the effective activation energy of viscous flow (Ea,η). While Ea,η values were different for each protein, they were independent of formulation conditions for a given protein. PPI were quantified via the osmotic second virial coefficient (B22) and the protein diffusion interaction parameter (kD) as a function of temperature under the same formulation conditions as the viscosity measurements. Net interactions ranged from strongly attractive to repulsive by changing formulation pH and ionic strength for each protein. Overall, larger activation energies for PPI corresponded to larger activation energies for η, and those were predictive of the highest η values at higher protein concentrations.


Asunto(s)
Anticuerpos Monoclonales/química , Unión Proteica , Anticuerpos Monoclonales/farmacocinética , Química Farmacéutica , Dispersión Dinámica de Luz , Concentración de Iones de Hidrógeno , Concentración Osmolar , Ósmosis , Temperatura , Viscosidad
10.
Langmuir ; 36(33): 9926-9934, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32697093

RESUMEN

The suspension structure and assembly kinetics of micrometer-diameter paramagnetic spheres in toggled magnetic fields are investigated at a constant field strength H = 1750A·m-1 while toggling the field on and off over the frequency range 0.3

11.
J Colloid Interface Sci ; 580: 264-274, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32688119

RESUMEN

HYPOTHESIS: Molecular engineering facilitates the development of a complex fluid with contradictory requirements of yield stress and sprayability, while minimizing the amount of structuring material (<0.05 wt%). This unique system can be achieved by a biopolymer hydrogel with tunable inter- and intra-molecular interactions for microstructural robustness and molecular extensibility by the variation of chemical conformations that microstructure breaks up under shear followed by a low molecularly extensible response. EXPERIMENTS: Blends of xanthan and konjac glucomannan containing 99.95 wt% water are demonstrated to satisfy these contradictory requirements and formulated as a function of KCl concentrations. A systematic study was performed using shear and extensional rheology and compared to a reference solution of polyethylene oxide (PEO), a well-known, Boger fluid, highlights the role of molecular elasticity in controlling critical rheological properties. Static light scattering (SLS) and simultaneous rheology and small-angle neutron scattering (RheoSANS) are also used to elucidate the equilibrium structure and flow dynamics. FINDINGS: The blends exhibit a lower yield stress and extensional resistance with added KCl, which leads to good spray characteristics in contrast to strain-hardening PEO. The results suggest that the inter-molecular attractions between the two gums leading to network formation with appropriate stiffness, that break up readily under shear, and low molecular elasticity are critical molecular design parameters necessary to achieve sprayable, yields stress fluids.

12.
Nat Mater ; 19(7): 775-780, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32123333

RESUMEN

The ageing behaviour of dense suspensions or pastes at rest is almost exclusively attributed to structural dynamics. Here, we identify another ageing process, contact-controlled ageing, consisting of the progressive stiffening of solid-solid contacts of an arrested colloidal suspension. By combining rheometry, confocal microscopy and particle-scale mechanical tests using laser tweezers, we demonstrate that this process governs the shear-modulus ageing of dense aqueous silica and polymer latex suspensions at moderate ionic strengths. We further show that contact-controlled ageing becomes relevant as soon as Coulombic interactions are sufficiently screened out that the formation of solid-solid contacts is not limited by activation barriers. Given that this condition only requires moderate ion concentrations, contact-controlled ageing should be generic in a wide class of materials, such as cements, soils or three-dimensional inks, thus questioning our understanding of ageing dynamics in these systems.

13.
J Colloid Interface Sci ; 566: 419-426, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32018182

RESUMEN

A layer-by-layer method is used to synthesize paramagnetic metal/polymer multi-layered colloidal particles. By taking advantage of recent advances in the synthesis of polymer colloids with various shapes and layer-by-layer assembly, superparamagnetic dumbbell colloids are fabricated with different aspect ratios and asymmetries between lobes. We characterize the surface coverage of magnetic nanoparticles on the anisotropic host particles and the magnetic response of the particles by magnetometry. The synthesized particles are colloidally stable, but in a magnetic field, form persistent microstructures through induced interactions. These column-like microstructures are reversible and readily disperse by Brownian motion. The magnetic nanoparticle concentration during synthesis provides a means to control the magnetic response of the composite nanoparticle. The method is extended to prolate ellipsoid nanoparticles with aspect ratios between 3.4 and 4.2.

14.
J Pharm Sci ; 109(4): 1449-1459, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31930979

RESUMEN

Non-native protein aggregation is a long-standing obstacle in the biopharmaceutical industry. Proteins can aggregate through different mechanisms, depending on the solution and stress conditions. Aggregation in bulk solution has been extensively studied in a mechanistic context and is known to be temperature dependent. Conversely, aggregation at interfaces has been commonly observed for liquid formulations but is less understood mechanistically. This work evaluates the combined effects of temperature and compression/dilation of air-water interfaces on aggregation rates and particle formation for anti-streptavidin immunoglobulin gamma-1. Aggregation rates are quantified via size-exclusion chromatography, dynamic light scattering, and microflow imaging as a function of temperature and extent of air-liquid interface compressions. Competition exists between bulk- and surface-mediated aggregation mechanisms. Each has a largely different temperature dependence that leads to a crossover between the dominant aggregation mechanisms as the sample temperature changes. Surface-mediated aggregation rates are pH dependent and correlate with electrostatic protein-protein interactions but do not mirror the pH dependence of bulk aggregation rates that instead follow trends for conformational stability. Mechanistic insights were informed by quiescent incubation of solutions before and after interface compressions. Detailed mechanistic conclusions require direct dynamic observation at the interface. Microbubble tensiometry is introduced as a promising tool for such measurements.


Asunto(s)
Inmunoglobulina G , Cromatografía en Gel , Concentración de Iones de Hidrógeno , Cinética , Electricidad Estática , Estreptavidina
15.
Methods Mol Biol ; 2039: 23-37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342416

RESUMEN

Static and dynamic (laser) light scattering (SLS and DLS, respectively) can be used to measure the so-called weak or colloidal protein-protein interactions in solution from low to high protein concentrations (c2). This chapter describes a methodology to measure protein-protein self-interactions using SLS and DLS, with illustrative examples for monoclonal antibody solutions from low to high protein concentrations (c2 ~ 1-102 g/L).


Asunto(s)
Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas/química , Proteínas/metabolismo , Anticuerpos Monoclonales/química , Luz , Dispersión de Radiación , Soluciones/química
16.
Nat Commun ; 10(1): 2237, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110184

RESUMEN

Colloidal gels formed by arrested phase separation are found widely in agriculture, biotechnology, and advanced manufacturing; yet, the emergence of elasticity and the nature of the arrested state in these abundant materials remains unresolved. Here, the quantitative agreement between integrated experimental, computational, and graph theoretic approaches are used to understand the arrested state and the origins of the gel elastic response. The micro-structural source of elasticity is identified by the l-balanced graph partition of the gels into minimally interconnected clusters that act as rigid, load bearing units. The number density of cluster-cluster connections grows with increasing attraction, and explains the emergence of elasticity in the network through the classic Cauchy-Born theory. Clusters are amorphous and iso-static. The internal cluster concentration maps onto the known attractive glass line of sticky colloids at low attraction strengths and extends it to higher strengths and lower particle volume fractions.

17.
J Pharm Sci ; 108(1): 142-154, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30017887

RESUMEN

Protein-protein interactions (PPI) and solution viscosities were measured at low and high protein concentrations under a range of formulation conditions for 4 different monoclonal antibodies. Static light scattering was used to quantify the osmotic second virial coefficient (B22) and the zero-q limit static structure factor (Sq=0), versus protein concentration (c2) from low to high c2. Dynamic light scattering was used to measure the collective diffusion coefficient as a function of c2 and to determine the protein interaction parameter (kD). Static light scattering and dynamic light scattering were combined to determine the hydrodynamic factor (Hq=0), which accounts for changes in hydrodynamic PPI as a function of c2. The net PPI ranged from strongly repulsive to attractive interactions, via changes in buffer pH, ionic strength, and choice of monoclonal antibodies. Multiple-particle tracking microrheology and capillary viscometery were used to measure monoclonal antibodies solution viscosities under the same solution conditions. In most cases, even large and qualitative changes in PPI did not result in significant changes in protein solution viscosity. This highlights the complex nature of PPI and how they influence protein solution viscosity and raises questions as to the validity of using experimental PPI metrics such as kD or B22 as predictors of high viscosity.


Asunto(s)
Anticuerpos Monoclonales/química , Proteínas/química , Soluciones/química , Dispersión Dinámica de Luz/métodos , Hidrodinámica , Concentración de Iones de Hidrógeno/efectos de los fármacos , Luz , Concentración Osmolar , Ósmosis/efectos de los fármacos , Mapeo de Interacción de Proteínas/métodos , Dispersión de Radiación , Electricidad Estática , Viscosidad/efectos de los fármacos
18.
Soft Matter ; 15(7): 1529-1538, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30488941

RESUMEN

Endoskeletal droplets-non-spherical emulsion droplets that respond to external stimuli with shape change-are modified with ferromagnetic iron oxide nanoparticles to make them susceptible to magnetic fields. The resulting droplets can be manipulated using static or oscillating magnetic fields, each producing a different response. Static fields control the orientation and position of the droplets, important in driving assembly into organized structures. Oscillating fields are shown to cause magnetic hyperthermia in ferrofluid nanoparticles, leading to droplet heating and forcing droplet reconfiguration. We demonstrate the use of static and dynamic fields to affect the organization and stability of endoskeletal droplets and their assemblies, producing highly-tunable programmable colloids that adapt to changing environmental conditions.

19.
Mol Pharm ; 15(10): 4745-4755, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30157651

RESUMEN

Solution viscosities (η) and protein-protein interactions (PPI) of three monoclonal antibodies (mAb-A, mAb-B, mAb-C), two bispecific antibodies (BsAb-A/B, BsAb-A/C), and two 1:1 binary mixtures (mAb-A + mAb-B and mAb-A + mAb-C) were measured. mAb-A and mAb-C have similar isoelectric point (pI) values but significantly different η versus protein concentration ( c2) profiles. The viscosity of the mAb-A + mAb-C mixture followed an Arrhenius mixing rule and was identical to viscosity of the bispecific BsAb-A/C. In contrast, mAb-A and mAb-B had similar η versus c2 profiles, but the Arrhenius mixing rule failed to predict the higher viscosities of their mixtures. The viscosity of the bispecific BsAb-A/B followed the 1:1 mAb-A + mAb-B mixture at all concentrations. The nature of the interactions for mAb-A, mAb-B, the BsAb-A/B bispecific, and the 1:1 mAb-A + mAb-B mixture were characterized by static and dynamic light scattering (SLS and DLS). mAb-A and mAb-B exhibited net-attractive and -repulsive electrostatic interactions, respectively. The bispecific antibody (BsAb-A/B) had short-ranged attractive interactions, suggesting that the increase in viscosity for this molecule and the mAb-A + mAb-B mixture was due to cross-interactions between Fab regions. At high and low ionic strengths and protein concentrations, the Rayleigh scattering profile, the collective diffusion coefficient, and viscosity for the mixture closely followed that for the bispecific antibody. These results highlight the possible anomalous viscosity increases of bispecific antibodies constructed from relatively low-viscosity mAbs but demonstrates a potentially fruitful approach of using mAb mixtures to predict the viscosity of candidate bispecific constructs.


Asunto(s)
Anticuerpos Biespecíficos/química , Proteínas/química , Anticuerpos Monoclonales/química , Luz , Concentración Osmolar , Unión Proteica , Viscosidad
20.
Nat Commun ; 9(1): 2918, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30046038

RESUMEN

Measuring polymer surface dynamics remains a formidable challenge of critical importance to applications ranging from pressure-sensitive adhesives to nanopatterning, where interfacial mobility is key to performance. Here, we introduce a methodology of Brillouin light spectroscopy to reveal polymer surface mobility via nanoparticle vibrations. By measuring the temperature-dependent vibrational modes of polystyrene nanoparticles, we identify the glass-transition temperature and calculate the elastic modulus of individual nanoparticles as a function of particle size and chemistry. Evidence of surface mobility is inferred from the first observation of a softening temperature, where the temperature dependence of the fundamental vibrational frequency of the nanoparticles reverses slope below the glass-transition temperature. Beyond the fundamental vibrational modes given by the shape and elasticity of the nanoparticles, another mode, termed the interaction-induced mode, was found to be related to the active particle-particle adhesion and dependent on the thermal behavior of nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...