Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(8): 626, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191736

RESUMEN

Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.


Asunto(s)
Dinaminas , Ferroptosis , Homeostasis , Mitocondrias , Dinámicas Mitocondriales , Oxidación-Reducción , Ferroptosis/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Humanos , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Potencial de la Membrana Mitocondrial , Muerte Celular , Ratones
2.
Nat Commun ; 14(1): 7145, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932294

RESUMEN

The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.


Asunto(s)
Cisteína , Células Ciliadas Auditivas Externas , Animales , Células Ciliadas Auditivas Externas/metabolismo , Cisteína/metabolismo , Aniones/metabolismo , Transporte Iónico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Anión/metabolismo , Mamíferos/metabolismo
3.
Br J Pharmacol ; 179(16): 4107-4116, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35352338

RESUMEN

BACKGROUND AND PURPOSE: The interaction of arrestins with G-protein coupled receptors (GPCRs) desensitizes agonist-dependent receptor responses and often leads to receptor internalization. GPCRs that internalize without arrestin have been classified as "class A" GPCRs whereas "class B" GPCRs co-internalize with arrestin into endosomes. The interaction of arrestins with GPCRs requires both agonist activation and receptor phosphorylation. Here, we ask the question whether agonists with very slow off-rates can cause the formation of particularly stable receptor-arrestin complexes. EXPERIMENTAL APPROACH: The stability of GPCR-arrestin-3 complexes at two class A GPCRs, the ß2 -adrenoceptor and the µ opioid receptor, was assessed using two different techniques, fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) employing several ligands with very different off-rates. Arrestin trafficking was determined by confocal microscopy. KEY RESULTS: Upon agonist washout, GPCR-arrestin-3 complexes showed markedly different dissociation rates in single-cell FRET experiments. In FRAP experiments, however, all full agonists led to the formation of receptor-arrestin complexes of identical stability whereas the complex between the µ receptor and arrestin-3 induced by the partial agonist morphine was less stable. Agonists with very slow off-rates could not mediate the co-internalization of arrestin-3 with class A GPCRs into endosomes. CONCLUSIONS AND IMPLICATIONS: Agonist off-rates do not affect the stability of GPCR-arrestin complexes but phosphorylation patterns do. Our results imply that orthosteric agonists are not able to pharmacologically convert class A into class B GPCRs.


Asunto(s)
Arrestina , Internado y Residencia , Arrestinas , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA