Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
JACS Au ; 1(2): 174-186, 2021 Feb 22.
Article En | MEDLINE | ID: mdl-33778810

Optical microscopy techniques are ideal for live cell imaging for real-time nanoparticle tracking of nanoparticle localization. However, the quantification of nanoparticle uptake is usually evaluated by analytical methods that require cell isolation. Luminescent labeling of gold nanoparticles with transition metal probes yields particles with attractive photophysical properties, enabling cellular tracking using confocal and time-resolved microscopies. In the current study, gold nanoparticles coated with a red-luminescent ruthenium transition metal complex are used to quantify and track particle uptake and localization. Analysis of the red-luminescence signal from particles is used as a metric of cellular uptake, which correlates to total cellular gold and ruthenium content, independently measured and correlated by inductively coupled plasma mass spectrometry. Tracking of the luminescence signal provides evidence of direct diffusion of the nanoparticles across the cytoplasmic membrane with particles observed in the cytoplasm and mitochondria as nonclustered "free" nanoparticles. Electron microscopy and inhibition studies identified macropinocytosis of clusters of particles into endosomes as the major mechanism of uptake. Nanoparticles were tracked inside GFP-tagged cells by following the red-luminescence signal of the ruthenium complex. Tracking of the particles demonstrates their initial location in early endosomes and, later, in lysosomes and autophagosomes. Colocalization was quantified by calculating the Pearson's correlation coefficient between red and green luminescence signals and confirmed by electron microscopy. Accumulation of particles in autophagosomes correlated with biochemical evidence of active autophagy, but there was no evidence of detachment of the luminescent label or breakup of the gold core. Instead, accumulation of particles in autophagosomes caused organelle swelling, breakdown of the surrounding membranes, and endosomal release of the nanoparticles into the cytoplasm. The phenomenon of endosomal release has important consequences for the toxicity, cellular targeting, and therapeutic future applications of gold nanoparticles.

2.
Eur J Med Chem ; 163: 853-863, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30579125

Two new ruthenium complexes, [Ru(η5-Cp)(PPh3)(2,2'-bipy-4,4'-R)]+ with R = -CH2OH (Ru1) or dibiotin ester (Ru2) were synthesized and fully characterized. Both compounds were tested against two types of breast cancer cells (MCF7 and MDA-MB-231), showing better cytotoxicity than cisplatin in the same experimental conditions. Since multidrug resistance (MDR) is one of the main problems in cancer chemotherapy, we have assessed the potential of these compounds to overcome resistance to treatments. Ru2 showed exceptional selectivity as P-gp inhibitor, while Ru1 is possibly a substrate. In vivo studies in zebrafish showed that Ru2 is well tolerated up to 1.17 mg/L, presenting a LC50 of 5.73 mg/L at 5 days post fertilization.


2,2'-Dipyridyl/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Biotin/chemistry , Coordination Complexes/pharmacology , Ruthenium/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Coordination Complexes/chemistry , Drug Resistance, Multiple , Humans , Ligands , Zebrafish
3.
Eur J Med Chem ; 155: 61-76, 2018 Jul 15.
Article En | MEDLINE | ID: mdl-29859505

The human enzyme 17ß-hydroxysteroid dehydrogenase 14 (17ß-HSD14) oxidizes the hydroxyl group at position 17 of estradiol and 5-androstenediol using NAD+ as cofactor. However, the physiological role of the enzyme remains unclear. We recently described the first class of nonsteroidal inhibitors for this enzyme with compound 1 showing a high 17ß-HSD14 inhibitory activity. Its crystal structure was used as starting point for a structure-based optimization in this study. The goal was to develop a promising chemical probe to further investigate the enzyme. The newly designed compounds revealed mostly very high inhibition of the enzyme and for seven of them the crystal structures of the corresponding inhibitor-enzyme complexes were resolved. The crystal structures disclosed that a small change in the substitution pattern of the compounds resulted in an alternative binding mode for one inhibitor. The profiling of a set of the most potent inhibitors identified 13 (Ki = 9 nM) with a good selectivity profile toward three 17ß-HSDs and the estrogen receptor alpha. This inhibitor displayed no cytotoxicity, good solubility, and auspicious predicted bioavailability. Overall, 13 is a highly interesting 17ß-HSD14 inhibitor, which might be used as chemical probe for further investigation of the target enzyme.


17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , 17-Hydroxysteroid Dehydrogenases/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
4.
Inorg Chem ; 57(8): 4629-4639, 2018 Apr 16.
Article En | MEDLINE | ID: mdl-29611696

New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η5-MeCp)(PPh3)(4,4'-R-2,2'-bpy)]+ (Ru1, R = H; Ru2, R = CH3; and Ru3, R = CH2OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P21/ c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P21/ n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.


2,2'-Dipyridyl/analogs & derivatives , 2,2'-Dipyridyl/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Resistance, Neoplasm/drug effects , Drug Stability , Humans , Ligands , Models, Chemical , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Quantum Theory
5.
Bioorg Med Chem ; 26(2): 421-434, 2018 01 15.
Article En | MEDLINE | ID: mdl-29233614

Aiming at generating a library of bioactive indole alkaloid derivatives as multidrug resistance (MDR) reversers, two epimeric indole alkaloids (1 and 2) were submitted to chemical transformations, giving rise to twenty-four derivatives (5-28), bearing new aromatic or aliphatic azine moieties. The structure of the compounds was established by 1D and 2D NMR (COSY, HMBC, HMQC and NOESY) experiments. Two different strategies were employed for assessing their anti-MDR potential, namely through the evaluation of their activity as inhibitors of typical MDR ABC transporters overexpressed by cell transfection, such as ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP), or by evaluating their ability as collateral sensitivity (CS) agents in cells overexpressing MRP1. A considerable MDR reversing activity was observed for compounds bearing the aromatic azine moiety. The strongest and most selective P-gp inhibition was found for the epimeric azines 5 and 6, bearing a para-methylbenzylidene moiety. Instead, compounds 17 and 18 that possess a di-substituted benzylidene portion with methoxy and hydroxyl groups, selectively inhibited MRP1 drug-efflux. None of these compounds inhibited BCRP. Compounds 5, 6 and 18 were further investigated in drug combination experiments, which corroborated their anti-MDR potential. Moreover, it was observed that compound 12, with an aromatic azine moiety, and compounds 23-26, sharing a new aliphatic substituent, displayed a CS activity, selectively killing MRP1-overexpressing cells. Among these last compounds, it could be established that addition of 19, 23 and 25 to MRP1-overexpressing cells led to glutathione depletion triggering cell death through apoptosis.


Alkaloids/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Hydrazines/pharmacology , Indoles/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetinae , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Mice , Molecular Structure , NIH 3T3 Cells , Structure-Activity Relationship
...