Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Rapid Commun Mass Spectrom ; 36(22): e9388, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36039809

RATIONALE: We evaluated the effect that the spatial positioning of coated-blade spray (CBS) devices with respect to the mass spectrometry (MS) inlet has when coupling to diverse MS platforms (i.e., triple quadrupole, linear ion trap and time of flight). Furthermore, as a proof of concept, we evaluated CBS-MS as a tool for quantitation of fentanyl and four analogues on said instruments. METHODS: Custom-made MS interfaces were made to accurately position the blade in front of the MS inlet. CBS devices, coated with hydrophilic-lipophilic balanced particles, were used for both the optimization of the CBS position and the quantitation of fentanyl and analogues in urine and plasma samples on all instruments. RESULTS: The SCIEX triple quadrupole instrument was the most sensitive to the position of the blade due to the presence of a curtain gas flowing laminarly out of the MS inlet. After optimization, the analytical capabilities of CBS on each instrument were assessed and the results obtained on both SCIEX and Waters platforms matched the performance obtained using a more advanced instrument by ThermoFisher Scientific. Furthermore, excellent figures of merit were attained for the quantitation of fentanyl and analogues on both triple quadrupole and linear ion trap platforms. CONCLUSIONS: We demonstrated that optimization of MS parameters on different instrument vendors and front ends, such as the position of the CBS tip regarding the MS inlet, is vital to exploit the full quantitative potential of this technology. Application of the technology to screen and quantify fentanyl and analogues showed great potential when considering its coupling with portable mass spectrometers for therapeutic drug monitoring and point-of-care applications.


Bays , Fentanyl , Drug Monitoring , Mass Spectrometry/methods
2.
J Mass Spectrom ; 56(1): e4665, 2021 Jan.
Article En | MEDLINE | ID: mdl-33098354

Because of the complexity and diversity of food matrices, their chemical analysis often entails several analytical challenges to attain accurate and reliable results, especially for multiresidue analysis and ultratrace quantification. Nonetheless, microextraction technology, such as solid-phase microextraction (SPME), has revolutionized the concept of sample preparation for complex matrices because of its nonexhaustive, yet quantitative extraction approach and its amenability to coupling to multiple analytical platforms. In recent years, microextraction devices directly interfaced with mass spectrometry (MS) have redefined the analytical workflow by providing faster screening and quantitative methods for complex matrices. This review will discuss the latest developments in the field of food analysis by means of microextraction approaches directly coupled to MS. One key feature that differentiates SPME-MS approaches from other ambient MS techniques is the use of matrix compatible extraction phases that prevent biofouling, which could drastically affect the ionization process and are still capable of selective extraction of the targeted analytes from the food matrix. Furthermore, the review examines the most significant applications of SPME-MS for various ionization techniques such as direct analysis in real time, dielectric barrier desorption ionization, and some unique SPME geometries, for example, transmission mode SPME and coated blade spray, that facilitate the interface to MS instrumentation.


Food Analysis/methods , Mass Spectrometry/methods , Solid Phase Microextraction/methods , Food Analysis/instrumentation , Limit of Detection , Mass Spectrometry/instrumentation , Solid Phase Microextraction/instrumentation , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods
3.
ACS Chem Neurosci ; 11(22): 3749-3760, 2020 11 18.
Article En | MEDLINE | ID: mdl-33125227

Fluoxetine is among the most prescribed antidepressant drugs worldwide. Nevertheless, limited information is known about its definitive mechanism. Although in vivo examinations performed directly in related brain structures can provide more realistic, and therefore more insightful, knowledge regarding the mechanisms and efficacy of this drug, only a few techniques are applicable for in vivo monitoring of metabolic alterations in the brain following an inducement. Among them, solid phase microextraction (SPME) and microdialysis (MD) have emerged as ideal in vivo tools for extraction of information from biosystems. In this investigation, we scrutinized the capabilities of SPME and MD to detect ongoing changes in the brain following acute fluoxetine administration. Sequential in vivo samples were collected simultaneously from male rats' hippocampi using SPME and MD before drug administration in order to establish a baseline; then samples were collected again following fluoxetine administration for an investigation of small molecule alterations. Our results indicate that MD provides more comprehensive information for polar compounds, while SPME provides superior information with respect to lipids and other medium level polar molecules. Interestingly, in the lipidomic investigation, all dysregulated features were found to be membrane lipids and associated compounds. Moreover, in the metabolomic investigations, dysregulation of hippocampal metabolite levels associated with fatty acid transportation and purine metabolisms were among the most notable findings. Overall, our evaluation of the obtained data corroborates that, when used in tandem, SPME and MD are capable of providing comprehensive information regarding the effect of fluoxetine in targeted brain structures and further elucidating this drug's mechanisms of action in the brain.


Fluoxetine , Solid Phase Microextraction , Animals , Brain , Fluoxetine/pharmacology , Hippocampus , Male , Microdialysis , Rats
4.
ACS Chem Neurosci ; 11(12): 1827-1840, 2020 06 17.
Article En | MEDLINE | ID: mdl-32407623

Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.


Metabolomics , Solid Phase Microextraction , Animals , Brain , Chromatography, Liquid , Mass Spectrometry , Rats
5.
Anal Chem ; 92(8): 5937-5943, 2020 04 21.
Article En | MEDLINE | ID: mdl-32192344

Rapid and efficient determination of contaminants at trace levels in tissue samples has become an unmet need around the globe. Coated blade spray (CBS) extraction/ionization is a technology capable of performing, with a single device, enrichment of analytes present in complex matrices, as well as the direct interface and introduction of said analytes into the mass spectrometer via electrospray ionization. To facilitate the challenging rapid tissue screening, we describe for the first time the use of a very thin layer of biocompatible polyacrylonitrile as a CBS device undercoating to make metal surface biocompatible. This add-on is meant to protect the portion of the uncoated stainless-steel of the blade that is normally exposed to the matrix, consequently becoming susceptible to adhesion of matrix macromolecules, cells, and fat. In addition, we present for the first time the use of CBS in negative ionization mode for quantitative purposes. The optimized CBS workflow allows for rapid and high-throughput screening and quantitation of 105 veterinary drugs in homogenized bovine tissue in both negative and positive ionization mode in one single run using a single CBS device with analysis times as short as 1 min per sample when 96 extractions are simultaneously conducted. While only two internal standards were used for correction, one per ionization mode, excellent accuracy and precision were achieved, with more than 90% of analytes falling within the 70-120% range of their true concentrations and yielding RSD ≤ 25% at three validation levels. The majority of analytes achieved linear correlation coefficients >0.99, and all 105 analytes were able to meet both Canadian and U.S. regulatory levels.


Red Meat/analysis , Veterinary Drugs/analysis , Animals , Cattle , Chromatography, High Pressure Liquid , Mass Spectrometry
6.
Anal Chim Acta ; 1091: 135-145, 2019 Dec 24.
Article En | MEDLINE | ID: mdl-31679567

Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) represent two of the most important endocannabinoids (ECs) investigated in neurobiology as therapeutic targets for several mental disorders. However, the determination of these ECs in biological matrices remains a challenging task because of the low concentrations, low stability and high protein-bound (LogP ∼ 6). This work describes innovative analytical methods based on biocompatible SPME (Bio-SPME), SPME-UHPLC-MS/MS and Bio-SPME-Nano-ESI-MS/MS, to determine AEA and 2-AG in human plasma samples. The direct coupling of Bio-SPME with nano-ESI-MS/MS can be considered an alternative tool for faster analysis. Different Bio-SPME fibers based on silica and polymeric coating (i.e. C18, C30, and HLB) were evaluated. Different desorption solvents based on combinations of methanol, acetonitrile, and isopropanol were also evaluated for efficient elution with minimum carry-over. Given the high protein binding analytes and the fact that SPME extracts the free-concentration of the analytes, the plasma samples were modified with additives such as guanidine hydrochloride (Gu-HCl), trifluoroacetic acid, and acetonitrile. This study was carried out by experimental design to achieve complete protein denaturation and the release of target analytes. The maximum extraction efficiency was obtained under the following conditions: HLB coated fibers (10 mm length, 20 µm coating thickness), matrix modified (300 µL of plasma) with 50 µL of Gu-HCL 1 mol L-1, 75 µL of ACN and 75 µL of water, and desorption with methanol/isopropanol solution (50:50, v/v). Both methods were validated based on current international guidelines and can be applied for monitoring of concentrations of endocannabinoids in plasma samples. SPME-UHPLC-MS/MS method presented lower LOQ values than SPME-nanoESI-MS/MS. The additional separation (chromatographic column) favored the detectability of LC-MS/MS method. However, the SPME-nano-ESI-MS/MS decrease the total analysis time, due to significant reductions in desorption and detection times.


Arachidonic Acids/blood , Chromatography, High Pressure Liquid/methods , Endocannabinoids/blood , Glycerides/blood , Polyunsaturated Alkamides/blood , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Humans
7.
Anal Chem ; 91(20): 13039-13046, 2019 10 15.
Article En | MEDLINE | ID: mdl-31429256

In the development of modern analytical workflows, parameters such as sample turnaround time, cost of analysis, and ease of use must be prioritized. Automation enables reductions in total analysis time, human intervention, and cost per sample. In this report, a suitable automated coated blade spray (CBS) workflow is proposed for the screening and quantitation of multiple substances (i.e., drugs of abuse and pesticides) in complex matrices. In an attempt to reduce the total sample analysis time, several parameters were investigated, including tandem mass spectrometry (MS) dwell time, CBS spray time, and extraction time. Solid-phase microextraction (SPME) method parameters are explored, such as reduction of extraction time for increased signal-to-noise. Model compounds with a moderately wide range of molecular weights (150-500 Da), polarities, and structural diversity were selected in order to monitor analytical figures of merit during method optimization. The resultant automated CBS method proved capable of analyzing the model compounds in human urine in under 10 s total analysis time with excellent accuracy (95-120%) and precision (RSD < 12%). As an application, an automated method for the screening and quantitation of more than 150 pesticides from apple juice was demonstrated on both triple quadrupole and orbitrap instruments in under 15 s total sample analysis time.

8.
Anal Chim Acta ; 1075: 112-119, 2019 Oct 10.
Article En | MEDLINE | ID: mdl-31196416

Electrospray ionization mass spectrometry (ESI-MS) is a commonly used technique for analysis of various samples. Solid phase microextraction (SPME) is a simple and efficient technique that combines both sampling and sample preparation into one consolidated step, preconcentrating extracted analytes for ultra-sensitive analysis. Historically, SPME has been coupled with chromatography-based techniques for sample separation prior to analysis, however more recently, the chromatographic step has been omitted, with the SPME device directly coupled with the mass spectrometer. In this study, direct coupling of SPME with ESI-MS was developed, and extensively validated to quantitate ketamine from human urine, employing a practical experimental workflow and no extensive hardware modification to the equipment. Among the different fibers evaluated, SPME device coated with C18/benzenesulfonic acid particles was selected for the analysis due to its good selectivity and signal response. Different approaches, including desorption spray, dripping, desorption ESI and nano-ESI were attempted for elution and ionization of the analytes extracted using the SPME fibers. The results showed that the desorption spray and nano-ESI methods offered better signal response and signal duration than the others that were evaluated. The analytical performance of the SPME-nano-ESI-MS setup was excellent, including limit of detection (LOD) of 0.027 ng/mL, limit of quantitation (LOQ) of 0.1 ng/mL, linear range of 0.1-500.0 ng/mL (R2 = 0.9995) and recoveries of 90.8-109.4% with RSD 3.4-10.6% for three validation points at 4.0, 40.0 and 400.0 ng/mL, far better than the performance of conventional methods. The results herein presented, demonstrated that the direct coupling of SPME fibers with ESI-MS-based systems allowed for the simple and ultra-sensitive determination of analytes from raw samples such as human urine.


Ketamine/urine , Humans , Limit of Detection , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods
9.
Anal Chem ; 91(15): 10141-10148, 2019 08 06.
Article En | MEDLINE | ID: mdl-31251031

It is hard to overstate the tremendous utility of desorption electrospray ionization (DESI) and its various configurations for rapid and high-throughput analyses or spatially resolved imaging of heterogeneous systems. However, there have been few attempts to employ this technique in spatially resolved mode with solid substrates featuring extractive and analyte-enrichment properties. This study documents the development of a platform that combines solid-phase microextraction (SPME) with desorption electrospray ionization mass spectrometry (DESI-MS) for unidimensional investigation of the heterogeneous distribution of compounds in semisolid systems (i.e., depth profiling across the fiber axis), with the ultimate end of employing it for brain tissue analysis. To this end, a DESI interface and a custom holder accommodating SPME probes were built in house, with the latter contributing to reduction of mechanical sources of signal instability. The system was evaluated through the quantitative reconstruction of the laminar and radial concentration gradients of xenobiotics introduced in multilayer gel arrangements and surrogate brain tissue models. Good quantitative capability was achieved by employing a strategy that combined signal correction via preloading internal standard onto SPME fibers and signal integration in scan-by-scan mode. The proposed technique's suitability for characterizing more complex systems, such as rat brains ex vivo, was also evaluated. The proposed approach allows for fast and noninvasive probing of three-dimensional objects without the need for their slicing, and the space-resolved mode reduces the number of required probe insertions, allowing in vivo applications. We foresee suitability of this setup for examining the spatial patterns of local drug release in the brain and the extent of the resultant physiological responses.


Brain/metabolism , Fluoxetine/metabolism , Selective Serotonin Reuptake Inhibitors/metabolism , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Fluoxetine/analysis , Fluoxetine/isolation & purification , Pilot Projects , Rats , Selective Serotonin Reuptake Inhibitors/analysis , Selective Serotonin Reuptake Inhibitors/isolation & purification
10.
Rapid Commun Mass Spectrom ; 33(18): 1423-1433, 2019 Sep 30.
Article En | MEDLINE | ID: mdl-31063263

RATIONALE: The workload of clinical laboratories has been steadily increasing over the last few years. High-throughput (HT) sample processing allows scientists to spend more time undertaking matters of critical thinking rather than laborious sample processing. Herein we introduce a HT 96-solid-phase microextraction (SPME) transmission mode (TM) system coupled to direct analysis in real time (DART) mass spectrometry (MS). METHODS: Model compounds (opioids) were extracted from urine and plasma samples using a 96-SPME-TM device. A standard voltage and pressure (SVP) DART source was used for all experiments. Examination of SPME-TM performance was done using high-resolution mass spectrometry (HRMS) in full scan mode (100-500 m/z), whereas quantitation of opioids was performed using triple quadrupole MS in multiple reaction monitoring mode and by using a matrix-matched internal standard correction method. RESULTS: Thirteen points (0.5 to 200 ng mL-1 ) were used to establish a calibration curve. Low limits of quantitation (LOQ) were obtained (0.5 to 25 ng mL-1 ) for matrices used. Acceptable accuracy (71.4-129.4%) and repeatability (1.1-24%) were obtained for validation levels tested (0.5, 30 and 90 ng mL-1 ). In less than 1.5 hours, 96 samples were extracted, desorbed and processed using the 96-SPME-TM system coupled to DART-MS. CONCLUSIONS: A rapid HT method for detection of opioids in urine and plasma samples was developed. This study demonstrated that ambient ionization mass spectrometry coupled to robust sample preparation methods such as SPME-TM can rapidly and efficiently screen/quantify target analytes in a HT context.


Analgesics, Opioid/blood , Analgesics, Opioid/urine , Mass Spectrometry/methods , Solid Phase Microextraction/instrumentation , Solid Phase Microextraction/methods , Substance Abuse Detection/methods , Calibration , Equipment Design , Humans , Limit of Detection , Sensitivity and Specificity , Substance Abuse Detection/instrumentation
11.
Analyst ; 144(12): 3721-3728, 2019 Jun 21.
Article En | MEDLINE | ID: mdl-30968079

Tranexamic acid (TXA) is an antifibrinolytic used during cardiac surgery that presents high inter-patient variability. High plasma concentrations have been associated with post-operative seizures. Due to the difficulties with maintaining acceptable concentrations of TXA during surgery, implementation of a point-of-care strategy for testing TXA plasma concentration would allow for close monitoring of its concentration during administration. This would facilitate timely corrections to the dosing schedule, and in effect tailor treatment for individual patient needs. In this work, a method for the rapid monitoring of TXA from plasma samples was subsequently carried out via biocompatible solid-phase microextraction (Bio-SPME) coupled directly to tandem mass spectrometry via a microfluidic open interface (MOI). MOI operates under the concept of a flow-isolated desorption volume and was designed with aims to directly hyphenate Bio-SPME to different detection and ionization systems. In addition, it allows the desorption of Bio-SPME fibers in small volumes while it concurrently continues feeding the ESI with a constant flow to minimize cross-talking and instabilities. The methodology was used to monitor six patients with varying degrees of renal dysfunction, at different time points during cardiac surgery. MOI proves to be a reliable and feasible tool for rapid therapeutic drug monitoring. Affording total times of analysis as low as 30 seconds per sample in its high throughput mode configuration while the single sample turn-around time was 15 minutes, including sample preparation. In addition, cross-validation against a standard thin film solid phase microextraction using liquid chromatography coupled to tandem mass spectrometry (TFME-LC-MS/MS) method was performed. Bland-Altman analysis was used to cross-validate the results obtained by the two methods. Data analysis demonstrated that 92% of the compared data pairs (n = 63) were distributed within the acceptable range. The data was also validated by the Passing Bablok regression, demonstrating good statistical agreement between these two methods. Finally, the currently presented method offers comparable results to the conventional liquid chromatography with acceptable RSDs, while only necessitating a fraction of the time. In this way, TXA concentration in plasma can be monitored in a close to real time throughput during surgery.


Antifibrinolytic Agents/blood , Drug Monitoring/methods , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Tranexamic Acid/blood , Humans , Microfluidics/methods , Reproducibility of Results
12.
Anal Chem ; 90(4): 2631-2638, 2018 02 20.
Article En | MEDLINE | ID: mdl-29388761

Technologies that efficiently integrate the sampling and sample preparation steps with direct introduction to mass spectrometry (MS), providing simple and sensitive analytical workflows as well as capabilities for automation, can generate a great impact in a vast variety of fields, such as in clinical, environmental, and food-science applications. In this study, a novel approach that facilitates direct coupling of Bio-SPME devices to MS using a microfluidic design is presented. This technology, named microfluidic open interface (MOI), which operates under the concept of flow-isolated desorption volume, consists of an open-to-ambient desorption chamber (V ≤ 7 µL) connected to an ionization source. Subsequently, compounds of interest are transported to the ionization source by means of the self-aspiration process intrinsic of these interfaces. Thus, any ionization technology that provides a reliable and constant suction, such as electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), or inductively coupled plasma ionization (ICP), can be hyphenated to MOI. Using this setup, the desorption chamber is used to release target compounds from the coating, while the isolation of the flow enables the ionization source to be continuously fed with solvent, all without the necessity of employment of additional valves. As a proof of concept, the design was applied to an ESI-MS/MS system for experimental validation. Furthermore, numerical simulations were undertaken to provide a detailed understanding of the fluid flow pattern inside the interface, then used to optimize the system for better efficiency. The analytical workflow of the developed Bio-SPME-MOI-MS setup consists of the direct immersion of SPME fibers into the matrix to extract/enrich analytes of interest within a short period of time, followed by a rinsing step with water to remove potentially adhering proteins, salts, and/or other interfering compounds. Next, the fiber is inserted into the MOI for desorption of compounds of interest. Finally, the volume contained in the chamber is drained and moved toward the electrospray needle for ionization and direct introduction to MS. Aiming to validate the technology, the fast determination of selected immunosuppressive drugs (e.g., tacrolimus, cyclosporine, sirolimus, and everolimus) from 100 µL of whole blood was assessed. Limits of quantitation in the subppb range were obtained for all studied compounds. Good linearity (r2 ≥ 0.99) and excellent precision, with (8%) and without (14%) internal standard correction, were attained.

13.
Bioanalysis ; 10(4): 257-271, 2018 Feb.
Article En | MEDLINE | ID: mdl-29376744

Coated blade spray (CBS) is a solid-phase microextraction-based technology that can be directly coupled to MS to enable the rapid qualitative and quantitative analysis of complex matrices. The goal of this mini review is to concisely introduce CBS's operational fundamentals and to consider how it correlates/contrasts with existing direct-to-MS technologies suitable for bioanalytical applications. In addition, we provide a fair comparison of CBS to other existing solid-phase microextraction-to-MS approaches, as well as an overview of recent CBS applications/strategies that have been developed to analyze diverse compounds present in biofluids.


Analytic Sample Preparation Methods , High-Throughput Screening Assays , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Body Fluids/chemistry , Coated Materials, Biocompatible/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Tandem Mass Spectrometry
14.
Sci Rep ; 8(1): 1167, 2018 01 18.
Article En | MEDLINE | ID: mdl-29348436

In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

16.
Anal Chem ; 90(1): 952-960, 2018 01 02.
Article En | MEDLINE | ID: mdl-29171275

The analysis of oral fluid (OF) and urine samples to detect drug consumption has garnered considerable attention as alternative biomatrices. Efficient implementation of microextraction and ambient ionization technologies for rapid detection of target compounds in such biomatrices creates a need for biocompatible devices which can be implemented for in vivo sampling and easily interfaced with mass spectrometry (MS) analyzers. This study introduces a novel solid-phase microextraction-transmission mode (SPME-TM) device made of poly(etheretherketone) (PEEK) mesh that can rapidly detect prohibited substances in biofluids via direct analysis in real-time tandem MS (DART-MS/MS). PEEK mesh was selected due to its biocompatibility, excellent resistance to various organic solvents, and its ability to withstand relatively high temperatures (≤350 °C). The meshes were coated with hydrophilic-lipophilic-balance particle-poly(acrylonitrile) (HLB-PAN) slurry. The robustness of the coated meshes was tested by performing rapid vortex agitation (≥3200 rpm) in LC/MS-grade solvents and by exposing them to the DART source jet stream at typical operational temperatures (∼250-350 °C). PEEK SPME-TM devices proved to be robust and were therefore used to perform ex vivo analysis of drugs of abuse spiked in urine and OF samples. Excellent results were obtained for all analytes under study; furthermore, the tests yielded satisfactory limits of quantitation (median, ∼0.5 ng mL-1), linearity (≥0.99), and accuracy (80-120%) over the evaluated range (0.5-200 ng mL-1). This research highlights plastic SPME-TM's potential usefulness as a method for rapidly screening for prohibited substances in on-site/in vivo scenarios, such as roadside or workplace drug testing, antidoping controls, and pain management programs.


Illicit Drugs/urine , Ketones/chemistry , Polyethylene Glycols/chemistry , Solid Phase Microextraction/instrumentation , Substance Abuse Detection/methods , Benzophenones , Caffeine/analysis , Equipment Reuse , Humans , Limit of Detection , Polymers , Saliva/chemistry , Solid Phase Microextraction/methods , Substance Abuse Detection/instrumentation , Tandem Mass Spectrometry
17.
Anal Chim Acta ; 999: 69-75, 2018 Jan 25.
Article En | MEDLINE | ID: mdl-29254576

Coated Blade Spray (CBS) is a technology that efficiently integrates sample preparation and direct coupling to mass spectrometry (MS) on a single device. In this article, we present CBS-tandem mass spectrometry (CBS-MS/MS) as a novel tool for the rapid and simultaneous determination of four commonly used immunosuppressive drugs (ISDs) in whole blood: tacrolimus (TAC) and cyclosporine-A (CycA), which are calcineurin inhibitors; and sirolimus (SIR) and everolimus (EVR), which are both mTOR (mechanistic target of rapamycin) inhibitors. Given that CBS extracts via free concentration, analytes that are largely bound to plasma proteins or red blood cells provide considerably lower extraction recovery rates. Therefore, we defy the solventless philosophy of SPME-based techniques, like CBS, by performing the analyte-enrichment step via direct immersion in a solvent-modified matrix. The assay was linear within the evaluated range of concentrations (between 1 and 100 ng/mL for EVR/SIR/TAC and 10-1000 ng/mL for CycA), and the limits of quantification were determined to be 10 ng/mL for CycA and 1 ng/mL for EVR/SIR/TAC. Good accuracy (87-119%) and linearity (r2 ≥ 0.99) were attained over the evaluated range for all ISDs. Interassay imprecision (CV) determined from incurred sample reanalysis was ≤10% for all ISDs. Our method was validated using Liquichek™ whole blood immunosuppressant quality control (QC) standards purchased from Bio-Rad. Concentrations determined by CBS-MS/MS were inside the range specified by Bio-Rad and within 15% of the expected mean value for all ISDs at all QC levels. Furthermore, the effect of different hematocrit levels (20, 45, and 70%) in the entire calibration range was carefully studied. No statistical differences (RSD ≤ 7%) in the calibration curve slopes of ISDs in blood were observed. CBS offers a simpler workflow than that of traditional methods; it eliminates the need for chromatographic separation and provides a clean extract that allows for long-term MS instrumental operation with minimal maintenance. Additionally, because CBS integrates all analytical steps into one device, it eliminates the risk of instrumental carry-over and can be used as a low-cost disposable device for sample preparation and analysis. Fully-automated sample preparation simplifies the method and allows for total analysis times as short as 3 min with turn-around times of less than 90 min.


Cyclosporine/blood , Everolimus/blood , Immunosuppressive Agents/blood , Sirolimus/blood , Tacrolimus/blood , Tandem Mass Spectrometry/methods , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Drug Monitoring/economics , Drug Monitoring/instrumentation , Drug Monitoring/methods , Equipment Design , Humans , Limit of Detection , Tandem Mass Spectrometry/economics , Tandem Mass Spectrometry/instrumentation , Time Factors
18.
Sci Rep ; 7(1): 16104, 2017 11 23.
Article En | MEDLINE | ID: mdl-29170449

This study demonstrates the quantitative capabilities of coated blade spray (CBS) mass spectrometry (MS) for the concomitant analysis of multiple target substances in biofluid spots. In CBS-MS the analytes present in a given sample are first isolated and enriched in the thin coating of the CBS device. After a quick rinsing of the blade surface, as to remove remaining matrix, the analytes are quickly desorbed with the help of a solvent and then directly electrosprayed into the MS analyzer. Diverse pain management drugs, controlled substances, and therapeutic medications were successfully determined using only 10 µL of biofluid, with limits of quantitation in the low/sub ng·mL-1 level attained within 7 minutes.


Mass Spectrometry/methods , Blood Chemical Analysis , Humans , Plasma/chemistry , Reference Standards , Tandem Mass Spectrometry
19.
Anal Chim Acta ; 991: 89-94, 2017 Oct 23.
Article En | MEDLINE | ID: mdl-29031302

Mass spectrometry (MS) based quantitative approaches typically require a thorough sample clean-up and a decent chromatographic step in order to achieve needed figures of merit. However, in most cases, such processes are not optimal for urgent assessments and high-throughput determinations. The direct coupling of solid phase microextraction (SPME) to MS has shown great potential to shorten the total sample analysis time of complex matrices, as well as to diminish potential matrix effects and instrument contamination. In this study, we demonstrate the use of the open-port probe (OPP) as a direct and robust sampling interface to couple biocompatible-SPME (Bio-SPME) fibres to MS for the rapid quantitation of opioid isomers (i.e. codeine and hydrocodone) in human plasma. In place of chromatography, a differential mobility spectrometry (DMS) device was implemented to provide the essential selectivity required to quantify these constitutional isomers. Taking advantage of the simplified sample preparation process based on Bio-SPME and the fast separation with DMS-MS coupling via OPP, a high-throughput assay (10-15 s per sample) with limits of detection in the sub-ng/mL range was developed. Succinctly, we demonstrated that by tuning adequate ion mobility separation conditions, SPME-OPP-MS can be employed to quantify non-resolved compounds or those otherwise hindered by co-extracted isobaric interferences without further need of coupling to other separation platforms.


Analgesics, Opioid/blood , Codeine/blood , Hydrocodone/blood , Mass Spectrometry , Solid Phase Microextraction , Humans
20.
Analyst ; 142(16): 2928-2935, 2017 Aug 07.
Article En | MEDLINE | ID: mdl-28721422

On-site screening for target analytes in complex matrices, such as biofluids and food specimens, not only requires reliable and portable analytical instrumentation, but also solvent-free and easy-to-use sampling/sample preparation approaches that allow analytes of interest to be isolated from such matrices. The integration of sampling devices with field deployable instruments should be as efficient as possible, and should aim to provide rapid, precise, and accurate results that enable quick on-site decision. In this study, we evaluated solid-phase microextraction-transmission (SPME-TM) coupled to a portable single quadrupole MS system, via direct analysis in real time (DART), as an effective tool for the rapid screening of target analytes in biological and food matrices. Limits of quantitation (LOQ) in the low parts-per-billion levels (≤50 ng mL-1) were attained for most of the investigated analytes with total analysis times under 2 min per sample. Furthermore, we explored the suitability of this technology for on-site rapid molecular profiling of complex matrices. As a proof-of-concept, we demonstrate the rapid identification of milk samples from assorted animal and vegetal sources.

...