Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(24): eado6169, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865457

RESUMEN

Nitrogenase plays a key role in the global nitrogen cycle; yet, the evolutionary history of nitrogenase and, particularly, the sequence of appearance between the homologous, yet distinct NifDK (the catalytic component) and NifEN (the cofactor maturase) of the extant molybdenum nitrogenase, remains elusive. Here, we report the ability of NifEN to reduce N2 at its surface-exposed L-cluster ([Fe8S9C]), a structural/functional homolog of the M-cluster (or cofactor; [(R-homocitrate)MoFe7S9C]) of NifDK. Furthermore, we demonstrate the ability of the L-cluster-bound NifDK to mimic its NifEN counterpart and enable N2 reduction. These observations, coupled with phylogenetic, ecological, and mechanistic considerations, lead to the proposal of a NifEN-like, L-cluster-carrying protein as an ancient nitrogenase, the exploration of which could shed crucial light on the evolutionary origin of nitrogenase and related enzymes.


Asunto(s)
Nitrogenasa , Nitrogenasa/metabolismo , Nitrogenasa/química , Nitrogenasa/genética , Filogenia , Nitrógeno/metabolismo , Nitrógeno/química , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Fijación del Nitrógeno/genética
2.
mBio ; : e0257223, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909748

RESUMEN

The functional versatility of the Fe protein, the reductase component of nitrogenase, makes it an appealing target for heterologous expression, which could facilitate future biotechnological adaptations of nitrogenase-based production of valuable chemical commodities. Yet, the heterologous synthesis of a fully active Fe protein of Azotobacter vinelandii (AvNifH) in Escherichia coli has proven to be a challenging task. Here, we report the successful synthesis of a fully active AvNifH protein upon co-expression of this protein with AvIscS/U and AvNifM in E. coli. Our metal, activity, electron paramagnetic resonance, and X-ray absorption spectroscopy/extended X-ray absorption fine structure (EXAFS) data demonstrate that the heterologously expressed AvNifH protein has a high [Fe4S4] cluster content and is fully functional in nitrogenase catalysis and assembly. Moreover, our phylogenetic analyses and structural predictions suggest that AvNifM could serve as a chaperone and assist the maturation of a cluster-replete AvNifH protein. Given the crucial importance of the Fe protein for the functionality of nitrogenase, this work establishes an effective framework for developing a heterologous expression system of the complete, two-component nitrogenase system; additionally, it provides a useful tool for further exploring the intricate biosynthetic mechanism of this structurally unique and functionally important metalloenzyme. IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.

3.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871225

RESUMEN

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Asunto(s)
Azotobacter vinelandii , Metaloproteínas , Nitrogenasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fijación del Nitrógeno/genética , Oxidorreductasas/metabolismo , Metaloproteínas/metabolismo , Proteínas Bacterianas/metabolismo
4.
Materials (Basel) ; 16(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763574

RESUMEN

The effect of Al and Ti additions on the microstructure and properties of CoNiFe alloys was studied in this paper. The investigations were conducted on four specially designed and produced arc furnace alloys (from 3 to 5 components, with medium to high entropy). Samples in various states were analyzed, i.e., as-cast, after homogenization, after solution heat treatment, and after solution heat treatment and aging. The obtained samples were characterized by: SEM observations, EDS, XRD, TEM analyses, and finally, hardness measurements. The solid solution strengthening coming from the addition of 5 at. pct. Al was negligible, while the effect from the 5 at. pct. of Ti addition was significant. The precipitation hardening effect related to the presence of the (CoNi)3Ti phase caused by the Ti addition is comparable with the total effect of the Al and Ti addition, which caused the precipitation of (NiCo)3AlTi.

5.
Chemosphere ; 312(Pt 1): 137165, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36356810

RESUMEN

Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.


Asunto(s)
Plaguicidas , Epidermis de la Planta , Epidermis de la Planta/metabolismo , Resonancia por Plasmón de Superficie , Goma , Compuestos Orgánicos/metabolismo , Permeabilidad , Plantas/metabolismo , Plaguicidas/metabolismo
6.
Protein Expr Purif ; 203: 106213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509382

RESUMEN

Transition metals such as copper and zinc are essential elements required for the survival of most organisms, from bacteria to humans. Yet, elevated levels of these elements are highly toxic. The Copper TRansporter protein family (CTRs) represents the only identified copper uptake proteins in eukaryotes and hence serves as key components for the maintenance of appropriate levels of the metal. Moreover, CTRs have been proposed to serve as an entry point into cells of certain cancer drugs and to constitute attractive drug-targets for novel antifungals. Nevertheless, the structure, function, and regulation of the CTRs remain elusive, limiting valuable information also for applied sciences. To this end, here we report procedures to isolate a range of CTR members using Saccharomyces cerevisiae as a production host, focusing on three homologs, human CTR1, human CTR2, and Candida albicans CTR. Using forms C-terminally-linked to a protease cleavage sequence, Green Fluorescent Protein (GFP), and a His-tag, assessment of the localization, quantification and purification was facilitated. Cellular accumulation of the proteins was investigated via live-cell imaging. Detergents compatible with acceptable solubilization yields were identified and fluorescence-detection size-exclusion-chromatography (F-SEC) revealed preferred membrane extraction conditions for the targets. For purification purposes, the solubilized CTR members were subjected to affinity chromatography and SEC, reaching near homogeneity. The quality and quantity of the CTRs studied will permit downstream efforts to uncover imperative biophysical aspects of these proteins, paving the way for subsequent drug-discovery studies.


Asunto(s)
Cobre , Saccharomyces cerevisiae , Humanos , Cobre/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transportador de Cobre 1/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
7.
Nutrients ; 16(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38201868

RESUMEN

The aim of this study was to assess the influence of bee pollen supplementation on the levels of enzymes important for gastric mucosal homeostasis, namely cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and a biomarker-asymmetric dimethylarginine (ADMA)-in the gastric mucosa of Wistar rats. The experimental phase divided the rats into four groups: two control groups, sedentary and active, both not supplemented, and two experimental groups, sedentary and active, supplemented with bee pollen. The results indicated that bee pollen supplementation reduced the levels of COX-1 and elevated iNOS levels, while showing no significant impact on COX-2 levels. These findings do not conclusively support the gastroprotective and anti-inflammatory effects of bee pollen on gastric mucosa. However, the supplementation could have resulted in reduced ADMA levels in the physically active supplemented group. Our study does not unequivocally demonstrate the positive effects of bee pollen supplementation on the gastric mucosa, which may be attributed to the specific metabolism and bioavailability of substances within unprocessed, dried bee pollen. Further research should explore the topic of potential therapeutic applications of bee pollen in gastrointestinal health and its interactions with ADMA signaling pathways.


Asunto(s)
Suplementos Dietéticos , Mucosa Gástrica , Animales , Abejas , Ratas , Ratas Wistar , Ciclooxigenasa 2 , Polen
8.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235278

RESUMEN

The Fe protein of nitrogenase plays multiple roles in substrate reduction and metallocluster assembly. Best known for its function to transfer electrons to its catalytic partner during nitrogenase catalysis, the Fe protein is also a key player in the biosynthesis of the complex metalloclusters of nitrogenase. In addition, it can function as a reductase on its own and affect the ambient reduction of CO2 or CO to hydrocarbons. This review will provide an overview of the properties and functions of the Fe protein, highlighting the relevance of this unique FeS enzyme to areas related to the catalysis, biosynthesis, and applications of the fascinating nitrogenase system.


Asunto(s)
Dióxido de Carbono , Nitrogenasa , Dióxido de Carbono/química , Hidrocarburos , Nitrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo
9.
Anal Chem ; 94(34): 11831-11837, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35969432

RESUMEN

Measurement of protein-facilitated copper flux across biological membranes is a considerable challenge. Here, we demonstrate a straightforward microfluidic-derived approach for visualization and measurement of membranous Cu flux. Giant unilamellar vesicles, reconstituted with the membrane protein of interest, are prepared, surface-immobilized, and assessed using a novel quencher-sensor reporter system for detection of copper. With the aid of a syringe pump, the external buffer is exchanged, enabling consistent and precise exchange of solutes, without causing vesicle rupture or uneven local metal concentrations brought about by rapid mixing. This approach bypasses common issues encountered when studying heavy metal-ion flux, thereby providing a new platform for in vitro studies of metal homeostasis aspects that are critical for all cells, health, and disease.


Asunto(s)
Cobre , Microfluídica , Lípidos , Membranas , Proteínas , Liposomas Unilamelares
10.
Protein Sci ; 31(7): e4364, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762724

RESUMEN

Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical ß-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.


Asunto(s)
Cobre , Proteínas de la Membrana , Transporte Biológico , Cobre/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo
11.
Materials (Basel) ; 14(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34772134

RESUMEN

Copper-containing mixed metal oxides are one of the most promising catalysts of selective catalytic oxidation of ammonia. These materials are characterized by high catalytic efficiency; however, process selectivity to dinitrogen is still an open challenge. The set of Cu-Zn-Al-O and Ce/Cu-Zn-Al-O mixed metal oxides were tested as catalysts of selective catalytic oxidation of ammonia. At the low-temperature range, from 250 °C up to 350 °C, materials show high catalytic activity and relatively high selectivity to dinitrogen. Samples with the highest Cu loading 12 and 15 mol.% of total cation content were found to be the most active materials. Additional sample modification by wet impregnation of cerium (8 wt.%) improves catalytic efficiency, especially N2 selectivity. The comparison of catalytic tests with results of physicochemical characterization allows connecting the catalysts efficiency with the form and distribution of CuO on the samples' surface. The bulk-like well-developed phases were associated with sample activity, while the dispersed CuO phases with dinitrogen selectivity. Material characterization included phase composition analysis (X-ray powder diffraction, UV-Vis diffuse reflectance spectroscopy), determination of textural properties (low-temperature N2 sorption, scanning electron microscopy) and sample reducibility analysis (H2 temperature-programmed reduction).

12.
Sci Rep ; 11(1): 21600, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732765

RESUMEN

Graphitic carbon nitride (CN) was synthesized from guanidine hydrochloride (G), melamine (M) and dicyandiamide (DCDA). The CN materials synthetized from the pure precursors and their mixtures were characterized by common methods, including thermal analysis, and their photocatalytic activities were tested by the degradation of selected organic pollutants, such as amoxicillin, phenol, Rhodamine B (RhB). Remarkable changes in their texture properties in terms of particle sizes, specific surface areas (SSA) and consequently their photocatalytic activity were explained by the role of guanidine hydrochloride in their synthesis. The SSA increased due to the release of NH3 and HCl and its complex reactions with melamine and DCDA forming structure imperfections and disruptions. The photocatalytic activity of the CN materials was found to be dependent on their SSA.

13.
PLoS One ; 15(2): e0228877, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32050009

RESUMEN

The efflux pumps from the Resistance-Nodulation-Division family, RND, are main contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the MdtABC pump is unusual by having two inner membrane components. The two components, MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the MdtBC pumps in the context of other RNDs. We show that the individual inner membrane components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their existence is a result of a single gene duplication. We argue that this gene duplication was an ancient event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa share a close common ancestor, suggesting the MexMN pump arose by another gene duplication event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core bacterial efflux pump repertoires have been generally stable throughout the course of evolution.


Asunto(s)
Proteínas Bacterianas/genética , Duplicación de Gen/genética , Proteobacteria/genética , Pseudomonas aeruginosa/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Transporte de Membrana/genética , Filogenia
14.
Mater Sci Eng C Mater Biol Appl ; 77: 780-789, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532093

RESUMEN

To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants.


Asunto(s)
Nanopartículas del Metal , Antibacterianos , Quitosano , Materiales Biocompatibles Revestidos , Durapatita , Staphylococcus aureus , Óxido de Zinc
15.
PLoS One ; 11(7): e0158972, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391676

RESUMEN

It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.


Asunto(s)
Bacillus subtilis , Complejo I de Transporte de Electrón , Proteínas de Escherichia coli , Escherichia coli , Mutagénesis Sitio-Dirigida , NADH Deshidrogenasa , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
16.
Biochim Biophys Acta ; 1837(1): 178-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24095649

RESUMEN

NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity.


Asunto(s)
Complejo I de Transporte de Electrón/química , Transporte de Electrón , Complejos Multienzimáticos/química , Intercambiadores de Sodio-Hidrógeno/química , Bacillus/química , Complejo I de Transporte de Electrón/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Hidrogenasas/química , Membranas/química , Membranas/enzimología , Subunidades de Proteína/química , Bombas de Protones/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
17.
Anal Biochem ; 445: 80-6, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24139955

RESUMEN

(23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.


Asunto(s)
Bacillus subtilis/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Espectroscopía de Resonancia Magnética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Transporte Iónico , Iones/química , Iones/metabolismo , Sodio/química , Intercambiadores de Sodio-Hidrógeno/genética
18.
FEBS Lett ; 587(20): 3341-7, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24021651

RESUMEN

MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed for function, the C-terminal domain of MrpA was absolutely required.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Concentración de Iones de Hidrógeno , Estructura Terciaria de Proteína
19.
Bioelectrochemistry ; 93: 30-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22749669

RESUMEN

The metabolically versatile purple bacteria Rhodobacter capsulatus was investigated to check its possible applicability in biofuel cells and electrochemical microbial biosensors. The wild type strain ATCC 17015 and mutant strain 37b4 lacking the lipopolysaccharide capsule was compared for their ability to communicate with electrodes modified with an osmium redox polymer. In this work, aerobic heterotrophically grown R. capsulatus were used to screen for efficient cell-electrode communication for later implementation using photoheterotrophically grown bacteria. The bacterial cells embedded in the osmium polymer matrix demonstrated efficient electrical "wiring" with the electrodes and were able to generate a noticeable current with succinate as substrate. Interestingly, at 2mM succinate the wild type strain showed much better bioelectrocatalytic current generation (4.25 µA/cm(2)) than the strain lacking capsule (1.55 µA/cm(2)). The wild type strain also exhibited a stable current response for longer time, demonstrating that the bacterial lipopolysaccharide in fact enhances the stability of the polymer matrix layer of the modified electrode. Control experiments with R. capsulatus without any mediator did not show any current irrespective of the capsule presence. This demonstrates that development of photosensors and other light driven bioelectrochemical devices could be feasible using R. capsulatus and will be at focus for future studies.


Asunto(s)
Procesos Heterotróficos , Osmio/química , Polímeros/química , Rhodobacter capsulatus/química , Rhodobacter capsulatus/crecimiento & desarrollo , Electroquímica , Electrodos , Oxidación-Reducción
20.
Protein Sci ; 19(8): 1445-60, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20509166

RESUMEN

Overproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane-spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task. In this work, the C-terminal ends of the Complex I subunits NuoH, NuoL, NuoM, and NuoN from E. coli Complex I and the bona fide antiporters MrpA and MrpD were genetically fused to the cytochrome c domain of Bacillus subtilis cytochrome c(550). Compared with other available fusion-protein tagging systems, the cytochrome c has several advantages. The heme is covalently bound, renders the proteins visible by optical spectroscopy, and can be used to monitor, quantify, and determine the orientation of the polypeptides in a plethora of experiments. For the antiporter-like subunits NuoL, NuoM, and NuoN and the real antiporters MrpA and MrpD, unprecedented amounts of holo-cytochrome fusion proteins could be obtained in E. coli. The NuoHcyt polypeptide was also efficiently produced, but heme insertion was less effective in this construct. The cytochrome c(550) domain in all the fusion proteins exhibited normal spectra and redox properties, with an E(m) of about +170 mV. The MrpA and MrpD antiporters remained functional after being fused to the cytochrome c-tag. Finally, a his-tag could be added to the cytochrome domain, without any perturbations to the cytochrome properties, allowing efficient purification of the overexpressed fusion proteins.


Asunto(s)
Citocromos c/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Citocromos c/química , Citocromos c/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...