Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 73(11): 3807-3822, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35298622

RESUMEN

De-methyl esterification of homogalacturonan and subsequent cross-linking with Ca2+ is hypothesized to enhance the freezing survival of cold acclimated plants by reducing the porosity of primary cell walls. To test this theory, we collected leaf epidermal peels from non- (23/18 °C) and cold acclimated (2 weeks at 12/4 °C) Japanese bunching onion (Allium fistulosum L.). Cold acclimation enhanced the temperature at which half the cells survived freezing injury by 8 °C (LT50 =-20 °C), and reduced tissue permeability by 70-fold compared with non-acclimated epidermal cells. These effects were associated with greater activity of pectin methylesterase (PME) and a reduction in the methyl esterification of homogalacturonan. Non-acclimated plants treated with 50 mM CaCl2 accumulated higher concentrations of galacturonic acid, Ca2+ in the cell wall, and a lower number of visible cell wall pores compared with that observed in cold acclimated plants. Using cryo-microscopy, we observed that 50 mM CaCl2 treatment did not lower the LT50 of non-acclimated cells, but reduced the lethal intracellular ice nucleation to temperatures observed in cold acclimated epidermal cells. We postulate that the PME-homogalacturonan-mediated reduction in cell wall porosity is integral to intracellular freezing avoidance strategies in cold acclimated herbaceous cells.


Asunto(s)
Allium , Calcio , Aclimatación , Cloruro de Calcio , Pared Celular , Frío , Congelación , Pectinas , Plantas , Temperatura
3.
Plant Physiol ; 178(3): 1045-1064, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30228108

RESUMEN

Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood. For instance, the enzymes that catalyze RG I elongation remain unknown. Recently, a coexpression- and sequence-based MUCILAGE-RELATED (MUCI) reverse genetic screen uncovered hemicellulose biosynthetic enzymes in the Arabidopsis (Arabidopsis thaliana) seed coat. Here, we use an extension of this strategy to identify MUCI70 as the founding member of a glycosyltransferase family essential for the accumulation of seed mucilage, a gelatinous wall rich in unbranched RG I. Detailed biochemical and histological characterization of two muci70 mutants and two galacturonosyltransferase11 (gaut11) mutants identified MUCI70 and GAUT11 as required for two distinct RG I domains in seed mucilage. We demonstrate that, unlike MUCI70, GAUT11 catalyzes HG elongation in vitro and, thus, likely is required for the synthesis of an HG region important for RG I elongation. Analysis of a muci70 gaut11 double mutant confirmed that MUCI70 and GAUT11 are indispensable for the production and release of the bulk of mucilage RG I and for shaping the surface morphology of seeds. In addition, we uncover relationships between pectin and hemicelluloses and show that xylan is essential for the elongation of at least one RG I domain.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Glucuronosiltransferasa/metabolismo , Hidrolasas/fisiología , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Semillas/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Glucuronosiltransferasa/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidrolasas/genética , Microscopía Electrónica de Rastreo , Filogenia , Mucílago de Planta/química , Mucílago de Planta/ultraestructura , Polisacáridos/metabolismo , Semillas/genética , Semillas/ultraestructura
4.
Plant J ; 94(3): 497-512, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29446495

RESUMEN

The production of hydrophilic mucilage along the course of seed coat epidermal cell differentiation is a common adaptation in angiosperms. Previous studies have identified COBRA-LIKE 2 (COBL2), a member of the COBRA-LIKE gene family, as a novel component required for crystalline cellulose deposition in seed coat epidermal cells. In recent years, Arabidopsis seed coat epidermal cells (SCEs), also called mucilage secretory cells, have emerged as a powerful model system for the study of plant cell wall components biosynthesis, secretion, assembly and de muro modification. Despite accumulating data, the molecular mechanism of COBL function remains largely unknown. In the current research, we utilized genetic interactions to study the role of COBL2 as part of the protein network required for seed mucilage production. Using correlative phenotyping of structural and biochemical characteristics, unique features of the cobl2 extruded mucilage are revealed, including: 'unraveled' ray morphology, loss of primary cell wall 'pyramidal' organization, reduced Ruthenium red staining intensity of the adherent mucilage layer, and increased levels of the monosaccharides arabinose and galactose. Examination of the cobl2cesa5 double mutant provides insight into the interface between COBL function and cellulose deposition. Additionally, genetic interactions between cobl2 and fei1fei2 as well as between each of these mutants to mucilage-modified 2 (mum2) suggest that COBL2 functions independently of the FEI-SOS pathway. Altogether, the presented data place COBL2 within the complex protein network required for cell wall deposition in the context of seed mucilage and introduce new methodology expending the seed mucilage phenotyping toolbox.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de la Membrana/fisiología , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Fenotipo , Epidermis de la Planta/metabolismo
5.
New Phytol ; 217(4): 1681-1695, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314018

RESUMEN

The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ-specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation at the tissue- and cell type-specific levels. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser-capture microdissection was performed to gain a cell type-specific transcriptome of U. maydis during tumour formation. In vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type-specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified as the first cell type-specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leaf cell types and of See1 as an effector for induction of proliferation of bundle sheath cells are major steps in understanding U. maydis-induced tumour formation. Moreover, the cell type-specific U. maydis transcriptome data are a valuable resource to the scientific community.


Asunto(s)
Hojas de la Planta/microbiología , Tumores de Planta/microbiología , Ustilago/fisiología , Zea mays/microbiología , Diferenciación Celular , División Celular , Proliferación Celular , Forma de la Célula , Pared Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , ADN/biosíntesis , Endorreduplicación , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/citología , Hojas de la Planta/ultraestructura , Zea mays/genética , Zea mays/ultraestructura
6.
Carbohydr Polym ; 168: 94-102, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28457468

RESUMEN

The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.


Asunto(s)
Pared Celular/ultraestructura , Polisacáridos/ultraestructura , Sida (Planta)/citología , Biomasa , Hidrólisis , Lignina , Pectinas , Tallos de la Planta , Xilanos
7.
Front Plant Sci ; 7: 803, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375657

RESUMEN

Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to hypothesize that some accessions might disrupt a transcriptional regulator of MUCI10. Therefore, this collection of publicly-available variants should provide insight into plant cell wall organization and facilitate the discovery of genes that regulate polysaccharide biosynthesis.

8.
Plant Physiol ; 169(4): 2481-95, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26482889

RESUMEN

All cells of terrestrial plants are fortified by walls composed of crystalline cellulose microfibrils and a variety of matrix polymers. Xylans are the second most abundant type of polysaccharides on Earth. Previous studies of Arabidopsis (Arabidopsis thaliana) irregular xylem (irx) mutants, with collapsed xylem vessels and dwarfed stature, highlighted the importance of this cell wall component and revealed multiple players required for its synthesis. Nevertheless, xylan elongation and substitution are complex processes that remain poorly understood. Recently, seed coat epidermal cells were shown to provide an excellent system for deciphering hemicellulose production. Using a coexpression and sequence-based strategy, we predicted several MUCILAGE-RELATED (MUCI) genes that encode glycosyltransferases (GTs) involved in the production of xylan. We now show that MUCI21, a member of an uncharacterized clade of the GT61 family, and IRX14 (GT43 protein) are essential for the synthesis of highly branched xylan in seed coat epidermal cells. Our results reveal that xylan is the most abundant xylose-rich component in Arabidopsis seed mucilage and is required to maintain its architecture. Characterization of muci21 and irx14 single and double mutants indicates that MUCI21 is a Golgi-localized protein that likely facilitates the addition of xylose residues directly to the xylan backbone. These unique branches seem to be necessary for pectin attachment to the seed surface, while the xylan backbone maintains cellulose distribution. Evaluation of muci21 and irx14 alongside mutants that disrupt other wall components suggests that mucilage adherence is maintained by complex interactions between several polymers: cellulose, xylans, pectins, and glycoproteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Mucílago de Planta/metabolismo , Semillas/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Celulosa/metabolismo , Genes Reporteros , Glicosiltransferasas/genética , Microfibrillas/química , Microfibrillas/metabolismo , Mutación , Pectinas/metabolismo , Pentosiltransferasa/genética , Filogenia , Mucílago de Planta/química , Polímeros/química , Polímeros/metabolismo , Polisacáridos/metabolismo , Semillas/genética , Análisis de Secuencia de ADN , Xilanos/química , Xilema/genética , Xilema/metabolismo
9.
Plant Physiol ; 169(1): 403-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26220953

RESUMEN

Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulosa/metabolismo , Mananos/biosíntesis , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Semillas/metabolismo , Adhesividad , Proteínas de Arabidopsis/genética , Brefeldino A/farmacología , Calcio/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación/efectos de los fármacos , Aparato de Golgi/metabolismo , Monosacáridos/análisis , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Trigonella/metabolismo , beta-Glucanos/metabolismo
10.
BMC Plant Biol ; 15: 54, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25849300

RESUMEN

BACKGROUND: The development of transgenic plants as a production platform for biomass-degrading enzymes is a promising tool for an economically feasible allocation of enzymes processing lignocellulose. Previous research has already identified a major limitation of in planta production such as interference with the structure and integrity of the plant cell wall resulting in a negative influence on plant growth and development. RESULTS: Here, we describe the in planta expression of endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei with differential intracellular targeting and evaluate its impact on the tobacco cell wall composition. Targeting of the enzyme to the apoplast leads to distinct changes in cell polysaccharides such as glucose level in the matrix polysaccharides (MPS). These effects are combined with severe changes in plant development. Retention of TrCel5A in the endoplasmic reticulum (ER) could avoid visible effects on plant growth under the chosen conditions, but exhibits changes in the composition of the MPS. CONCLUSIONS: These results give new insights into the complex interaction of heterologous cellulase expression with cell wall development and it outlines novel promising strategies to engineer plant cell walls for improved biomass processing.


Asunto(s)
Pared Celular/metabolismo , Celulasa/metabolismo , Nicotiana/metabolismo , Proteínas Recombinantes/metabolismo , Trichoderma/enzimología , Biomasa , Celulosa/metabolismo , Hidrólisis , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Nicotiana/genética
11.
Int J Mol Sci ; 16(2): 3452-73, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25658798

RESUMEN

For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.


Asunto(s)
Arabidopsis/citología , Pared Celular/metabolismo , Pectinas/metabolismo , Semillas/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Modelos Biológicos , Mutación , Semillas/citología , Xilanos/metabolismo
12.
Biotechnol Biofuels ; 6(1): 53, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23587418

RESUMEN

BACKGROUND: Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. RESULTS: Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. CONCLUSION: We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants.

13.
Plant Cell ; 23(11): 4025-40, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22080600

RESUMEN

An Arabidopsis thaliana mutant with an altered structure of its hemicellulose xyloglucan (XyG; axy-8) identified by a forward genetic screen facilitating oligosaccharide mass profiling was characterized. axy8 exhibits increased XyG fucosylation and the occurrence of XyG fragments not present in the wild-type plant. AXY8 was identified to encode an α-fucosidase acting on XyG that was previously designated FUC95A. Green fluorescent protein fusion localization studies and analysis of nascent XyG in microsomal preparations demonstrated that this glycosylhydrolase acts mainly on XyG in the apoplast. Detailed structural analysis of XyG in axy8 gave unique insights into the role of the fucosidase in XyG metabolism in vivo. The genetic evidence indicates that the activity of glycosylhydrolases in the apoplast plays a major role in generating the heterogeneity of XyG side chains in the wall. Furthermore, without the dominant apoplastic glycosylhydrolases, the XyG structure in the wall is mainly composed of XXXG and XXFG subunits.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Polisacáridos/química , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Carbohidratos , Pared Celular/química , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Glucanos/metabolismo , Datos de Secuencia Molecular , Polisacáridos/metabolismo , Xilanos/química , Xilanos/metabolismo
14.
Methods Mol Biol ; 715: 43-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21222075

RESUMEN

In today's field of plant cell wall research, insights into the structure of wall components are obtained using many different techniques, ranging from spectroscopic and microscopic to chemical and biochemical. In this chapter, we describe one method: oligosaccharide mass profiling (OLIMP). Using OLIMP, we can harness the selective power of a specific wall hydrolase together with the speed and sensitivity of mass spectrometry to provide highly reproducible structural and compositional information about the wall molecule of interest.


Asunto(s)
Arabidopsis/química , Pared Celular/química , Polisacáridos/química , Arabidopsis/citología , Aparato de Golgi/química , Peso Molecular , Oligosacáridos/química , Plantones/química , Plantones/citología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Planta ; 233(4): 707-19, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21170548

RESUMEN

Xyloglucan is the most abundant hemicellulose in the walls of dicots such as Arabidopsis. It is part of the load-bearing structure of a plant cell and its metabolism is thought to play a major role in cell elongation. However, the molecular mechanism by which xyloglucan carries out this and other functions in planta is not well understood. We performed a forward genetic screen utilizing xyloglucan oligosaccharide mass profiling on chemically mutagenized Arabidopsis seedlings to identify mutants with altered xyloglucan structures termed axy-mutants. One of the identified mutants, axy3.1, contains xyloglucan with a higher proportion of non-fucosylated xyloglucan subunits. Mapping revealed that axy3.1 contains a point mutation in XYLOSIDASE1 (XYL1) known to encode for an apoplastic glycoside hydrolase releasing xylosyl residues from xyloglucan oligosaccharides at the non-reducing end. The data support the hypothesis that AXY3/XYL1 is an essential component of the apoplastic xyloglucan degradation machinery and as a result of the lack of function in the various axy3-alleles leads not only to an altered xyloglucan structure but also a xyloglucan that is less tightly associated with other wall components. However, the plant can cope with the excess xyloglucan relatively well as the mutant does not display any visible growth or morphological phenotypes with the notable exception of shorter siliques and reduced fitness. Taken together, these results demonstrate that plant apoplastic hydrolases have a larger impact on wall polymer structure and function than previously thought.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Pared Celular/enzimología , Glucanos/química , Polisacáridos/química , Xilanos/química , Xilosidasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Carbohidratos , Cromatografía por Intercambio Iónico , Técnica del Anticuerpo Fluorescente , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Polisacáridos/metabolismo , Estructura Terciaria de Proteína , Semillas/anatomía & histología , Xilanos/metabolismo , Xilosidasas/química , Xilosidasas/genética
16.
J Vis Exp ; (40)2010 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-20567216

RESUMEN

The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)(1) (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself(2), and is amenable to high-throughput analyses(3). While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes(4). For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase(5, 11, 12, 13), xylan using an endo-beta-(1-4)-xylanase (6,7), or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase (8). Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined (9).


Asunto(s)
Arabidopsis/química , Pared Celular/química , Matriz Extracelular/química , Oligosacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Arabidopsis/enzimología , Arabidopsis/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Matriz Extracelular/enzimología , Matriz Extracelular/metabolismo , Oligosacáridos/metabolismo
17.
BMC Plant Biol ; 9: 141, 2009 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-19943973

RESUMEN

BACKGROUND: To investigate the link between the flowering time gene GIGANTEA (GI) and downstream genes, an inducible GI system was developed in Arabidopsis thaliana L. Heynh. Transgenic Arabidopsis plant lines were generated with a steroid-inducible post-translational control system for GI. The gene expression construct consisted of the coding region of the GI protein fused to that of the ligand binding domain of the rat glucocorticoid receptor (GR). This fusion gene was expressed from the constitutive cauliflower mosaic virus 35S promoter and was introduced into plants carrying the gi-2 mutation. Application of the steroid dexamethasone (DEX) was expected to result in activation of the GI-GR protein and its relocation from the cytoplasm to the nucleus. RESULTS: Application of DEX to the transgenic plant lines rescued the late flowering phenotype conferred by the gi-2 mutation. However, despite their delayed flowering in the absence of steroid, the transgenic lines expressed predicted GI downstream genes such as CONSTANS (CO) to relatively high levels. Nevertheless, increased CO and FLOWERING LOCUS T (FT) transcript accumulation was observed in transgenic plants within 8 h of DEX treatment compared to controls which was consistent with promotion of flowering by DEX. Unlike CO and FT, there was no change in the abundance of transcript of two other putative GI downstream genes HEME ACTIVATOR PROTEIN 3A (HAP3A) or TIMING OF CHLOROPHYLL A/B BINDING PROTEIN 1 (TOC1) after DEX application. CONCLUSION: The post-translational activation of GI and promotion of flowering by steroid application supports a nuclear role for GI in the floral transition. Known downstream flowering time genes CO and FT were elevated by DEX treatment, but not other proposed targets HAP3A and TOC1, indicating that the expression of these genes may be less directly regulated by GI.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dexametasona/farmacología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Glucocorticoides/farmacología , Mutagénesis Insercional , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Planta/genética , Ratas
18.
Plant Cell ; 20(4): 888-900, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18390591

RESUMEN

The three amino acid loop extension (TALE) homeodomain superfamily, which comprises the KNOTTED-like and BEL1-like families, plays a critical role in regulating meristem activity. We previously demonstrated a function for KNAT6 (for KNOTTED-like from Arabidopsis thaliana 6) in shoot apical meristem and boundary maintenance during embryogenesis. KNAT2, the gene most closely related to KNAT6, does not play such a role. To investigate the contribution of KNAT6 and KNAT2 to inflorescence development, we examined their interactions with two TALE genes that regulate internode patterning, BREVIPEDICELLUS (BP) and PENNYWISE (PNY). Our data revealed distinct and overlapping interactions of KNAT6 and KNAT2 during inflorescence development. Removal of KNAT6 activity suppressed the pny phenotype and partially rescued the bp phenotype. Removal of KNAT2 activity had an effect only in the absence of both BP and KNAT6 or in the absence of both BP and PNY. Consistent with this, KNAT6 and KNAT2 expression patterns were enlarged in both bp and pny mutants. Thus, the defects seen in pny and bp are attributable mainly to the misexpression of KNAT6 and to a lesser extent of KNAT2. Hence, our data showed that BP and PNY restrict KNAT6 and KNAT2 expression to promote correct inflorescence development. This interaction was also revealed in the carpel.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Secuencia de Bases , Cartilla de ADN , Silenciador del Gen , Hibridación in Situ , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA