Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
RSC Adv ; 14(30): 21355-21374, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979463

RESUMEN

Carbonic anhydrase CA-II enzyme is essential for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance due to its vital function within cellular processes. Herein, we screened 25 newly synthesized thiazole derivatives and assessed their inhibitory potential against the zinc-containing carbonic anhydrase CA-II enzyme. Intriguingly, derivatives of thiazole exhibited varying degrees of inhibitory action against CA-II. The distinctive attribute of these compounds is that they can attach to the CA-II binding site and block its action. Morpholine based thiazoles can be strategically modified to improve bovine CA-II inhibitor binding affinity, selectivity, and pharmacokinetics. Thiazole and morpholine moieties can boost inhibitory efficacy and selectivity over other calcium-binding proteins by interacting with target bovine CA-II binding sites. The derivatives 23-26 exhibited greater affinity when compared to the standard acetazolamide. Furthermore, kinetic study of the most potent compound 24 was performed, which exhibited concentration dependent inhibition with a K i value of 9.64 ± 0.007 µM. Molecular docking, MD simulation and QSAR analysis was also carried out to elucidate the interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, pharmacokinetic assessments showed that most of the compounds possess attributes conducive to potential drug development.

2.
Bioorg Med Chem Lett ; 108: 129801, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38777279

RESUMEN

Novel saturated 6-(4'-aryloxy phenyl) vinyl 1,2,4-trioxanes 12a(1-3)-12d(1-3) and 13a(1-3)-13d(1-3) have been designed and synthesized, in one single step from diimide reduction of 11a(1-3)-11d(1-3). All the newly synthesized trioxanes were evaluated for their antimalarial activity against multi-drug resistant Plasmodium yoelii nigeriensis via oral route. Cyclopentane-based trioxanes 12b1, 12c1 and 12d1, provided 100 % protection to the infected mice at 24 mg/kg × 4 days. The most active compound of the series, trioxane 12b1, provided 100 % protection even at 12 mg/kg × 4 days and 60 % protection at 6 mg/kg × 4 days. The currently used drug, ß-arteether provides only 20 % protection at 24 mg/kg × 4 days.


Asunto(s)
Antimaláricos , Resistencia a Múltiples Medicamentos , Compuestos Heterocíclicos , Malaria , Plasmodium yoelii , Animales , Plasmodium yoelii/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/síntesis química , Ratones , Administración Oral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Malaria/tratamiento farmacológico , Relación Estructura-Actividad , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Estructura Molecular , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Parasitaria
3.
ACS Omega ; 9(20): 22123-22135, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799342

RESUMEN

Autoimmune disorders include vast and distinct illnesses and are characterized by an immune system-mediated attack on the body's own tissues. Because of their ability to impact any portion of the body, their clinical symptoms are incredibly varied. The variations in symptoms are normally linked with the release and activation of vasoactive, chemotactic substances and cytokines. Cytokines perform a multitude of vital biological tasks, such as immune response control, inflammation, proliferation, and tissue repair. The reversal of inflammatory cytokines and leukocyte infiltration into the inflamed tissue by natural compounds provides an effective remedy for autoimmune diseases. Here, the oral administration of trans-chalcone (TC) for 28 days was tested with gradually increasing doses (30, 60, and 120 mg/kg) in complete Freund's adjuvant (CFA)-provoked joint tissue stiffness in rats. Paw edema, arthritic index, joint stiffness, thermal and flexion pain, C-reactive protein, and rheumatoid factor (RF) levels were determined to check the tested drug effectiveness in a chronic inflammatory model. Molecular docking studies revealed strong binding affinity with inflammatory cytokines and mediators such as TNF-α, IL-17, COX-2, and iNOS; further, they were quantified at the mRNA level by RT-PCR and ELISA analysis. Oral administration of TC significantly ameliorated paw edema, thymus and spleen indices, joint stiffness, thermal and flexion pain, C-reactive protein, RF, mobility, and stance of the treated animals. This therapeutic effectiveness was linked with a reduction in the mRNA expression of proinflammatory cytokines such as IL-1ß, IL-6, and IL-17. The findings of the reported research confirmed the effectiveness of TC in ameliorating joint stiffness and flexion pain by prominently lowering the inflammatory cytokines.

4.
Comput Biol Med ; 176: 108573, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723396

RESUMEN

In this work we investigated the Pks13-TE domain, which plays a critical role in the viability of the mycobacteria. In this report, we have used a series of AI and Physics-based tools to identify Pks13-TE inhibitors. The Reinvent 4, pKCSM, KDeep, and SwissADME are AI-ML-based tools. AutoDock Vina, PLANTS, MDS, and MM-GBSA are physics-based methods. A combination of these methods yields powerful support in the drug discovery cycle. Known inhibitors of Pks13-TE were collected, curated, and used as input for the AI-based tools, and Mol2Mol molecular optimisation methods generated novel inhibitors. These ligands were filtered based on physics-based methods like molecular docking and molecular dynamics using multiple tools for consensus generation. Rigorous analysis was performed on the selected compounds to reduce the chemical space while retaining the most promising compounds. The molecule interactions, stability of the protein-ligand complexes and the comparable binding energies with the native ligand were essential factors for narrowing the ligands set. The filtered ligands from docking, MDS, and binding energy colocations were further tested for their ADMET properties since they are among the essential criteria for this series of molecules. It was found that ligands Mt1 to Mt6 have excellent predicted pharmacokinetic, pharmacodynamic and toxicity profiles and good synthesisability.


Asunto(s)
Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Inteligencia Artificial , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Simulación de Dinámica Molecular , Ligandos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Descubrimiento de Drogas
5.
Heliyon ; 10(5): e26802, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434349

RESUMEN

Tuberculosis has been a challenge to the world since prehistoric times, and with the advent of drug-resistant strains, it has become more challenging to treat this infection. Ethionamide (ETH), a second-line drug, acts as a prodrug and targets mycolic acid synthesis by targeting the enoyl-acyl carrier protein reductase (InhA) enzyme. Mycobacterium tuberculosis (Mtb) EthR is an ethA gene repressor required to activate prodrug ETH. Recent studies suggest targeting the EthR could lead to newer drug molecules that would help better activate the ETH or complement this process. In this report, we have attempted and successfully identified three new molecules from the drug repurposing library that can target EthR protein and function as ETH boosters. These molecules were obtained after rigorous filtering of the database for their physicochemical, toxicological properties and safety. The molecular docking, molecular dynamics simulations and binding energy studies yielded three compounds, Ethyl (2-amino-4-((4-fluorobenzyl)amino)phenyl)carbamate) (L1), 2-((2,2-Difluorobenzo [d] [1,3]dioxol-5-yl)amino)-2-oxoethyl (E)-3-(5-bromofuran-2-yl)acrylate (L2), and N-(2,3-Dihydrobenzo [b] [1,4]dioxin-6-yl)-4-(2-((4-fluorophenyl)amino)-2-oxoethoxy)-3-methoxy benzamide (L3) are potential EthR inhibitors. We applied machine learning methods to evaluate these molecules for toxicity and synthesisability, suggesting safety and ease of synthesis for these molecules. These molecules are known for other pharmacological activities and can be repurposed faster as adjuvant therapy for tuberculosis.

6.
Pathol Res Pract ; 255: 155158, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320438

RESUMEN

Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-ß (TGF-ß) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-ß signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-ß signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-ß pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-ß signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-ß signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-ß signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-ß signaling cascade through the manipulation of ncRNAs.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , ARN no Traducido/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
7.
Environ Res ; 243: 117737, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38036211

RESUMEN

The aim of this study is to investigate the effects of vermicompost on the biological and microbial properties of lettuce rhizosphere in an agricultural field in Samsun, Turkey. The experiment was conducted in a completely randomised design (CRD) and included four vermicompost dosages (0%, 1%, 2%, and 4%) and two application methods (with and without plants). Batavia lettuce was selected as the test plant due to its sensitivity to environmental conditions and nutrient deficiencies. The study evaluated the changes in organic matter (OM), pH, electrical conductivity (EC), carbon dioxide (CO2), dehydrogenase activity (DHA), microbial biomass carbon (MBC), and catalase activity (CA) in the rhizosphere of lettuce plants treated with different vermicompost levels (0%, 1%, 2%, and 4%). The findings showed that vermicompost application significantly increased chlorophyll content in lettuce plants, with the highest content observed in plants treated with V1 compared to the control. Different vermicompost concentrations also influenced chlorophyll b and total chlorophyll levels, with positive effects observed at lower concentrations than the control. Plant height and fresh weight were highest in plants treated with V2, indicating the positive impact of vermicompost on plant growth. Additionally, vermicompost application increased plant dry weight and improved soil properties such as pH, organic matter content, and microbial activity. The findings showed that vermicompost increased the rhizosphere's microbial biomass and metabolic activity, which can be beneficial for plant growth and disease suppression. The study highlights the importance of understanding the effects of organic amendments on soil properties and the microbial community in the rhizosphere, which can contribute to sustainable agricultural practices. Overall, the results suggest that vermicompost can be used as an effective organic amendment for enhancing plant growth and improving soil properties in agricultural fields. Moreover, based on the data, it can be suggested that a dose between 1% and 2% vermicompost is beneficial for the overall growth of plants.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Lactuca , Agricultura , Plantas , Clorofila
8.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069809

RESUMEN

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Factor 2 Relacionado con NF-E2 , Inflamación , Pulmón
9.
Pathophysiology ; 30(4): 567-585, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38133142

RESUMEN

BACKGROUND: As the impacts of diabetes-induced reproductive damage are now evident in young people, we are now in urgent need to devise new ways to protect and enhance the reproductive health of diabetic people. The present study aimed to evaluate the protective effects of enalapril (an ACE inhibitor) and paricalcitol (a vitamin D analog), individually or in combination, on streptozotocin (STZ)-diabetes-induced testicular dysfunction in rats and to identify the possible mechanisms for this protection. MATERIAL AND METHODS: This study was carried out on 50 male Sprague-Dawley rats; 10 normal rats were allocated as a non-diabetic control group. A total of 40 rats developed diabetes after receiving a single dose of STZ; then, the diabetic rats were divided into four groups of equivalent numbers assigned as diabetic control, enalapril-treated, paricalcitol-treated, and combined enalapril-and-paricalcitol-treated groups. The effects of mono and combined therapy with paricalcitol and enalapril on testicular functions, sperm activity, glycemic state oxidative stress, and inflammatory parameters, as well as histopathological examinations, were assessed in comparison with the normal and diabetic control rats. RESULTS: As a result of diabetes induction, epididymal sperm count, sperm motility, serum levels of testosterone, follicle-stimulating hormone (FSH) as well as luteinizing hormone (LH), and the antioxidant enzyme activities, were significantly decreased, while abnormal sperm (%), insulin resistance, nitric oxide (NO), malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were significantly increased, along with severe distortion of the testicular structure. Interestingly, treatment with paricalcitol and enalapril, either alone or in combination, significantly improved the sperm parameters, increased antioxidant enzyme activities in addition to serum levels of testosterone, FSH, and LH, reduced insulin resistance, IL-6, and TNF-α levels, and finally ameliorated the diabetes-induced testicular oxidative stress and histopathological damage, with somewhat superior effect for paricalcitol monotherapy and combined therapy with both drugs compared to monotherapy with enalapril alone. CONCLUSIONS: Monotherapy with paricalcitol and its combination therapy with enalapril has a somewhat superior effect in improving diabetes-induced testicular dysfunction (most probably as a result of their hypoglycemic, antioxidant, anti-inflammatory, and anti-apoptotic properties) compared with monotherapy with enalapril alone in male rats, recommending a synergistic impact of both drugs.

10.
J Mater Chem B ; 11(44): 10692-10705, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37917006

RESUMEN

A nanocomposite of (2-aminoethyl)piperazine ligand substituted with zinc(II) tetra carboxylic acid phthalocyanine (ZnTEPZCAPC) and MWCNTs was constructed and employed to develop an electrochemical sensor with outstanding sensitivity and a low detection limit. The macrocyclic complex ZnTEPZCAPC was first synthesized and then employed for the electrochemical determination of the antipsychotic drug promazine (PMZ). The as-prepared ZnTEPZCAPC and MWCNT nanocomposite was characterized using different techniques, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). Further, the prepared ZnTEPZCAPC@MWCNT nanocomposites were modified on a glassy carbon electrode (GCE) surface, and the electrochemical activity was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA) tests in pH 7.0 phosphate buffer solution (PBS) in the potential window of 0.0-1 V. The ZnTEPZCAPC@MWCNTs displayed a superior electrochemical performance because of their high electrochemical active surface area (0.453 cm2), good conductivity, and a synergetic effect. The developed electrochemical sensor exhibited a broad linear range of 0.05-635 µM and the lowest detection limit of 0.0125 nM, as well as excellent sensitivity, repeatability, and reproducibility. Finally, the fabricated sensor was successively used for the real-time detection of PMZ in environmental and biological samples and displayed feasible recoveries.


Asunto(s)
Antipsicóticos , Promazina , Espectroscopía Infrarroja por Transformada de Fourier , Reproducibilidad de los Resultados , Zinc , Piperazinas
11.
Heliyon ; 9(11): e21539, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37942165

RESUMEN

COPD (chronic obstructive pulmonary disease) is a medical condition that encompasses several chronic, progressive, and severe respiratory illnesses, such as emphysema and chronic bronchitis. COPD is the 4th most deadly disease in the world and its prevalence is expected to increase. Despite the abundance of information on the disease's etiology, pathophysiology, and treatment possibilities, it has long been underdiagnosed and underreported for a long time, particularly in developing countries. The symptoms of COPD result in significant impairments and significant impact on quality of life. COPD is the third leading cause of death in Pakistan. According to the published literature, COPD has been found to be associated with a serious economic burden, either the direct cost to healthcare systems in the form of frequent hospital admissions or indirect costs to patients suffering from COPD. Despite the availability of excellent medication, COPD treatment goals are frequently not achieved resulting in poor management of COPD. The recent studies revealed that due to the missing role of Pharmacists in most of the public sector hospitals of Pakistan, the COPD disease management protocols are not being properly followed. Pharmacists can help the healthcare system by implementing these management protocols that focus on patient education about the disease, prescribed medications, and proper inhalation techniques. Furthermore, the pharmacists as an effective healthcare's team member properly educate the patients about the ongoing assessments and their willingness to follow treatment recommendations and quit smoking, while referring them to smoking cessation programs as needed, following the GOLD guidelines. This aim of this clinical trial is to evaluate the impact of implementing standard treatment guidelines and the role of pharmacists in implementing GOLD guidelines for COPD management.

12.
Biomed Pharmacother ; 165: 115126, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37494787

RESUMEN

Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.


Asunto(s)
Diabetes Mellitus Experimental , Eugenia , Saponinas , Ratas , Animales , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fitoquímicos/uso terapéutico , Fenoles/farmacología , Hojas de la Planta/química , Saponinas/uso terapéutico
13.
J Biophotonics ; 16(9): e202300110, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37261437

RESUMEN

Therapeutic potential and toxic effects of in vivo administered gold nanoparticles (GNPs) and silver nanoparticles (SNP) depend on distribution in tissues. Rhodamine (Rho) labeled bovine serum albumin (BSA) and chitosan (Chi) were prepared by covalent conjugation and were characterized by fluorescence spectral analysis. GNP and SNP were coated with the labeled conjugates of BSA and chitosan by adsorption. The soluble Rho-BSA or Rho-Chi conjugates, uncoated, and conjugate-coated GNP, and SNP were orally administered into 8-week-old rats. After 24 h, rats were euthanized and the liver, kidney, spleen, and thymus were dissected. The tissues were examined ex vivo using a small animal in vivo imaging system. The liver, kidney, and thymus displayed higher fluorescence due to increased accumulation of Rho-BSA or Rho-Chi conjugate-coated nanoparticles (NPs) in the tissues as compared to the spleen where lower fluorescence was noticed. Tissues obtained from rats that were administered Rho-BSA or Rho-Chi conjugate-coated GNP and SNP showed tenfold higher fluorescence intensity as compared to tissues from rats that were given soluble conjugates or NP alone. The results strongly suggest significant tissue distribution of NP following oral administration.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Ratas , Animales , Oro , Albúmina Sérica Bovina , Plata , Rodaminas , Imagen Óptica , Tamaño de la Partícula
14.
Chemosphere ; 322: 138080, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781001

RESUMEN

Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Clorofila A , Triticum , Plantones
15.
Chemosphere ; 322: 138079, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775030

RESUMEN

Oryza sativa is grown worldwide and exhibit sensitivity to different stresses. Exponential increase in microplastics in agroecosystems is damaging and demand pragmatic strategies to protect growth and yield losses. We evaluated exogenous application of different doses of glutathione (GSH) for mediation of physiological traits of rice plants experiencing two different MPs i.e. PET and HDPE in root zone. All the rice seedlings exhibited MP-induced significant (P ≤ 0.001) growth inhibition compared to the control plants. GSH application (T3) significantly increased the shoot fresh weight (8.80%), root fresh weight (19.22%), shoot dry weight (13.705%), root dry weight (25.52%), plant height (5.75%) and 100-grain weight (9.36%), compared to control plants. GSH treated plants (T4) showed a recovery mechanism by managing the marginal rate of reduction of all photosynthetic and gas exchange attributes by showing 34.44, 20.98, 34.83, 42.16, 39.70, and 51.38% reduction for Chl-a, Chl-b, total cholophyll, photosynthetic rate (A), transpiration rate (E), and stomatal conductance (Gs), respectively, compared to control plants. Under 5 mg L-1 HDPE and PET, rice seedlings without GSH treatment responded in terms of increase in total soluble sugar, total free amino acid, glutathione, glutathione disulfide contents, while total soluble protein and ascorbic acid contents decreased significantly, compared with control plants. Corrleation matrix revealed positive relationship between GSH and improvement in studied attributes. Moreover, exogenous GSH improved rice growth and productivity to counter the negative role of MPs. This unique study examined the effects of GSH on rice plants growing in MP-contaminated media and revealed how exogenous GSH helps plants survive MP-stress.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Glutatión/metabolismo , Plantones , Raíces de Plantas/metabolismo
16.
Chemosphere ; 318: 137924, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682633

RESUMEN

Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Microbiología del Suelo , Plantas , Cambio Climático
17.
Exp Biol Med (Maywood) ; 248(23): 2237-2248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205769

RESUMEN

This study was conducted to compare the impact of cinnamon silver nanoparticles (C-Ag-NPs) and cinnamon aqueous extract (CAE) on the total body weight (TBW), body weight gain (BWG), blood count (BC), fasting blood glucose (FBG), triglycerides (TGs), total cholesterol (TC), low-density (LDL-C) and high-density (HDL-C) lipoprotein cholesterol, liver function enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of normal and streptozotocin (STZ) diabetic rats. The CAE was administered to rats at different doses (50.0 and 100.0 mg/kg bw), whereas the C-Ag-NPs were ingested at doses of 25.0 and 50.0 mg/kg bw for 30 days. At the end of the experiment, the administration of high or low dosages of CAE or C-Ag-NPs to diabetic rats significantly reduced the FBG, TC, TG, and LDL-C and significantly increased the HDL-C compared with the diabetic control rats. The highest dose (50.0 mg/kg bw) of the C-Ag-NPs was the most efficient at significantly reducing (P < 0.05) the levels of all the analyzed parameters compared with the CAE. However, the treated and normal rats did not show any hypoglycemic activity after ingesting the CAE or C-Ag-NPs. Such effects were associated with considerable increases in their BWG. The diabetic rats that ingested the CAE or C-Ag-NPs showed a gradual decrease in their FBG, TC, LDL, and TG levels, but they were still higher than those in the normal rats. Furthermore, the C-Ag-NPs and CAE considerably enhanced the hepatic (GPT, GOT, ALP, and GGT) and antioxidant biomarker enzyme activities (SOD, CAT, and GPx) in diabetic rats. Relative to the untreated diabetic control, the C-Ag-NPs were more effective than the CAE in the diabetic rats. The C-Ag-NPs exhibited a protective role against hyperglycemia and hyperlipidemia in the diabetic rats and modulated their liver function enzyme biomarkers and antioxidant enzyme activities more than the CAE.


Asunto(s)
Diabetes Mellitus Experimental , Hiperlipidemias , Nanopartículas del Metal , Ratas , Animales , Antioxidantes/farmacología , Hiperlipidemias/complicaciones , Hiperlipidemias/tratamiento farmacológico , Plata/farmacología , Plata/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , LDL-Colesterol/farmacología , LDL-Colesterol/uso terapéutico , Ratas Wistar , Glucemia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Peso Corporal
18.
Front Chem ; 10: 964446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304744

RESUMEN

SARS-CoV-2 triggered a worldwide medical crisis, affecting the world's social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19's threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski's rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein-ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein-ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein-ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation.

19.
Appl Nanosci ; : 1-11, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120603

RESUMEN

Nanostructured Zinc oxide (ZnO) materials have attained exciting research interests among various metal oxide nanoparticles due to their unique features. Thus, the scope of applications for ZnO nanoparticles (ZnO NPs) is vast and efficient. The current study demonstrates a simple and environmental-friendly approach for the synthesis of ZnO NPs using the extract of the Scoparia Dulcis. Scoparia Dulcis is a common medicinal plant in Kerala (India) that is traditionally used for its medicinal properties. Morphological characterizations of the as-synthesized ZnO NPs were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM). The results revealed that ZnO NPs showed pebble-like morphology and possessed an average particle size of ~ 20 nm. Further, antibacterial and antifungal activities of as-prepared ZnO NPs were investigated against E. coli, Staphylococcus aureus, as well as Candida albicans, and Aspergillus niger, respectively, using the agar-well diffusion method. The results revealed that the prepared ZnO NPs shows excellent antimicrobial activity against the examined microorganisms. Moreover, the antioxidant activity of the as-synthesized ZnO NPs was evaluated using the DPPH assay, which indicated an excellent IC50 value of 1.78 µg/mL that shows high antioxidant activity. All these results proved that the S. dulcis plant extract-mediated synthesis method is a simple, low-cost, eco-friendly procedure for preparing efficient ZnO NPs for biomedical applications.

20.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144942

RESUMEN

The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less explored for SC applications. Herein, we proposed a high-performance binder-free anode material composed of two-dimensional ZnFe2O4 nanoflakes supported on carbon cloth (ZFO-NF@CC). The electrochemical performance of ZFO-NF@CC as an anode material for supercapacitor application was examined in a KOH solution via a three-electrode configuration. The ZFO-NF@CC electrode demonstrated a specific capacitance of 509 F g-1 at 1.5 A g-1 and was retained 94.2% after 10,000 GCD cycles. The ZFO-NF@CC electrode showed exceptional charge storage properties by attaining high pseudocapacitive-type storage. Furthermore, an asymmetric SC device was fabricated using ZFO-NF@CC as an anode and activated carbon on CC (AC@CC) as a cathode with a KOH-based aqueous electrolyte (ZFO-NF@CC||AC@CC). The ZFO-NF@CC||AC@CC yielded a high specific capacitance of 122.2 F g-1 at a current density of 2 A g-1, a high energy density of 55.044 Wh kg-1 at a power density of 1801.44 W kg-1, with a remarkable retention rate of 96.5% even after 4000 cycles was attained. Thus, our results showed that the enhanced electrochemical performance of ZFO-NF@CC used as an anode in high-performance SC applications can open new research directions for replacing carbon-based anode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA