Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Article En | MEDLINE | ID: mdl-38871498

IMPORTANCE: Epicardial adipose tissue (EAT) is a biologically active organ surrounding myocardium and coronary arteries that has been associated with coronary artery disease (CAD) and atrial fibrillation. Previous work has shown that EAT exhibits beige features. OBJECTIVE: Our objective was to determine whether the stromal vascular fraction of the human EAT contains innate or adaptive lymphoid cells compared to thoracic subcutaneous (thSAT), visceral abdominal (VAT) and subcutaneous abdominal (abSAT). PARTICIPANTS: New pangenomic microarray analysis was performed on previous transcriptomic dataset using significance analysis of microarray and ingenuity pathway analysis (n=41) to identify specific immune signature and its link with browning genes. EAT, thSAT, VAT and abSAT samples from explanted patients with severe cardiomyopathies and multi-organ donor patients (n=17) were used for flow cytometry (FC) immunophenotyping assay. Patients were on average 55±16 years-old; 47% had hypertension and 6% CAD. Phenotypic adaptive and innate immune profiles were performed using a TBNK panel and a specific ILC1-2-3 panel including CD127, CD117, CRTH2 (CD294) and activation markers such as CD25 and CD69. RESULTS: Transcriptomic analysis showed a significant positive correlation between the TH2 immune pathway (IL-4, IL-5, IL-13, IL-25, IL-33) and browning genes (UCP-1, PRDM16, TMEM26, CITED1, TBX1) in EAT versus thSAT (R=0.82, P<0.0001). Regarding adaptive immune cells, a preponderance of CD8T cells, a contingent of CD4T cells, and a few B cells were observed in all ATs (P<0.0001). In innate lymphoid cells (ILCs), an increase was observed in visceral ATs (i.e. EAT; VAT 35±8ILCs/g of tissue) compared to their subcutaneous counterpart (i.e. thSAT+abSAT: 8±3 ILCs/g of AT, P=0.002), with a difference in the proportion of the 3 subtypes of ILCs (ILC1>ILC3>ILC2). In addition, we observed an increase in EAT-ILC2 compared to other ATs and almost all these EAT-ILC2 expressed CD69 and/or CD25 activation markers (99.75±0.16%; P<0.0001). We also observed more NKs in EAT and VAT (1520±71 cells/g of AT) than in SATs (562±17 cells/g of AT); P=0.01. CONCLUSION: This is the first study to provide a comparison between innate and adaptive lymphoid cells in human epicardial versus abdominal or thoracic adipose tissues. Further studies are ongoing to decipher whether these cells could be involved in EAT beiging. TRIAL REGISTRATION: CODECOH No. DC-2021-4518 The French agency of biomedicine PFS21-005.

2.
Article En | MEDLINE | ID: mdl-38747118

OBJECTIVE: Epicardial adipose tissue (EAT) is a visceral fat that has been associated with coronary artery disease and atrial fibrillation. Previous work has revealed that EAT exhibits beige features. METHODS: First, a new pan-genomic microarray analysis was performed on previously collected paired human EAT and thoracic subcutaneous AT (thSAT) from the EPICAR study (n = 31) to decipher a specific immune signature and its link with browning genes. Then, adaptive (T and B cells) and innate lymphoid cell (ILC1, ILC2, and ILC3) immunophenotyping assay panels, including CD127, CD117, and prostaglandin D2 receptor 2, were performed on prospectively collected paired human multiorgan donors (n = 18; INTERFACE study). RESULTS: In the EPICAR study, a positive correlation between the T helper cell subtype Th2 immune pathway and browning genes was found in EAT versus thSAT (r = 0.82; p < 0.0001). In the INTERFACE study, this correlation was also observed (r = 0.31; p = 0.017), and a preponderance of CD4+T cells, CD8+T cells, and a few B cells was observed in all ATs (p < 0.0001). An increase in ILCs was observed in visceral AT (VAT) (i.e., EAT + VAT; 30 ± 5 ILCs per gram of AT) compared with subcutaneous counterparts (i.e., thSAT + abdominal SAT; 8 ± 2 ILCs per gram of AT; p = 0.001), with ILC1 being the most frequent (ILC1 > ILC3 > ILC2). Numbers of ILCs per gram of AT correlated with several Th2 or browning genes (IL-13, TNF receptor superfamily member 9 [TNFRSF9], and alkaline phosphatase, biomineralization associated [ALPL]). Interestingly, a specific increase in EAT-ILC2 compared with other ATs was observed, including a significant proportion expressing CD69 and/or CD25 activation markers (97.9% ± 1.2%; p < 0.0001). Finally, more natural killer cells were observed in EAT + VAT than in thSAT + abdominal SAT (p = 0.01). Exclusion of patients with coronary artery disease in the EPICAR and INTERFACE studies did not modify the main findings. Gene expression phenotyping confirmed specific upregulation of Th2 pathway and browning genes (IL-33 and uncoupling protein 1 [UCP-1]) in EAT. CONCLUSIONS: This is the first study, to our knowledge, to provide a comparison between innate and adaptive lymphoid cells in human EAT. Further studies are ongoing to decipher whether these cells could be involved in EAT beiging.

3.
Obes Surg ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809400

INTRODUCTION: Currently, gastroesophageal reflux disease (GERD) is the main side effect after sleeve gastrectomy (SG), causing discomfort and potential long-term risks. Surgical techniques combining fundoplication with SG are being evaluated to limit postoperative GERD. METHODS: This single-center retrospective study evaluated patients who underwent SG with posterior fundoplication in the context of GERD between 2018 and 2021, with postoperative follow-up up to 24 months. The results were compared to a control group (ratio 1 to 4) who had SG without fundoplication. Observed total weight loss (TWL) was compared to predicted TWL using the Sophia multinational study's machine learning-based calculator. RESULTS: The series included 22 patients (mean body mass index 44.4 kg/m2) with GERD conditions: GERD symptoms (n = 15), hiatal hernia (n = 6), esophagitis (n = 7), and Barrett's esophagus (n = 5). Two patients required reoperation, including one for valve perforation. At 2 years, GERD was present in three patients (13.6%), including two who regularly took proton pump inhibitors. Compared to the control group (n=88), the frequency of GERD persisting at 2 years was significantly reduced in the SG with fundoplication group (p=0.05). The TWL at 12 and 24 months was 27.7% and 26.1%, respectively, with no significant difference compared to the weight predicted by the model, nor compared to the control group. CONCLUSION: The combination of posterior fundoplication with SG can be proposed in patients with GERD who have a contraindication to Roux-en-Y gastric bypass. Specific morbidity may exist at the beginning of the experience.

4.
Circ Res ; 134(2): 189-202, 2024 01 19.
Article En | MEDLINE | ID: mdl-38152893

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Monocytes/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Risk Factors , Prospective Studies , Calcium/metabolism , Phenotype , Heart Disease Risk Factors
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article En | MEDLINE | ID: mdl-38003449

Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.


Diabetes, Gestational , Heart Defects, Congenital , Hyperglycemia , Pregnancy in Diabetics , Pregnancy , Female , Humans , Diabetes, Gestational/genetics , Risk Factors , Heart Defects, Congenital/genetics , Pregnancy in Diabetics/genetics , Hyperglycemia/complications , Hyperglycemia/genetics
7.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article En | MEDLINE | ID: mdl-37569425

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early stages of DR. A total of 194 plasma samples were collected from patients with type 2 DM and DR (moderate to proliferative (PDR) or control (no or mild DR) matched for age, gender, diabetes duration, HbA1c, and hypertension. Untargeted lipidomic and metabolomic approaches were performed. Partial-least square methods were used to analyze the datasets. Levels of 69 metabolites and 85 lipid species were found to be significantly different in the plasma of DR patients versus controls. Metabolite set enrichment analysis indicated that pathways such as metabolism of branched-chain amino acids (methylglutaryl carnitine p = 0.004), the kynurenine pathway (tryptophan p < 0.001), and microbiota metabolism (p-Cresol sulfate p = 0.004) were among the most enriched deregulated pathways in the DR group. Moreover, Glucose-6-phosphate (p = 0.001) and N-methyl-glutamate (p < 0.001) were upregulated in DR. Subgroup analyses identified a specific signature associated with PDR, macular oedema, and DR associated with chronic kidney disease. Phosphatidylcholines (PCs) were dysregulated, with an increase of alkyl-PCs (PC O-42:5 p < 0.001) in DR, while non-ether PCs (PC 14:0-16:1, p < 0.001; PC 18:2-14:0, p < 0.001) were decreased in the DR group. Through an unbiased multiomics approach, we identified metabolites and lipid species that interestingly discriminate patients with or without DR. These features could be a research basis to identify new potential plasma biomarkers to promote 3P medicine.


Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetic Retinopathy/metabolism , Lipidomics , Multiomics , Diabetes Mellitus, Type 2/complications , Metabolomics , Lipids
8.
Front Endocrinol (Lausanne) ; 14: 1181452, 2023.
Article En | MEDLINE | ID: mdl-37424866

Background: Type 2 diabetes (T2D) and obesity induce left ventricular (LV) dysfunction. The underlying pathophysiological mechanisms remain unclear, but myocardial triglyceride content (MTGC) could be involved. Objectives: This study aimed to determine which clinical and biological factors are associated with increased MTGC and to establish whether MTGC is associated with early changes in LV function. Methods: A retrospective study was conducted using five previous prospective cohorts, leading to 338 subjects studied, including 208 well-phenotyped healthy volunteers and 130 subjects living with T2D and/or obesity. All the subjects underwent proton magnetic resonance spectroscopy and feature tracking cardiac magnetic resonance imaging to measure myocardial strain. Results: MTGC content increased with age, body mass index (BMI), waist circumference, T2D, obesity, hypertension, and dyslipidemia, but the only independent correlate found in multivariate analysis was BMI (p=0.01; R²=0.20). MTGC was correlated to LV diastolic dysfunction, notably with the global peak early diastolic circumferential strain rate (r=-0.17, p=0.003), the global peak late diastolic circumferential strain rate (r=0.40, p<0.0001) and global peak late diastolic longitudinal strain rate (r=0.24, p<0.0001). MTGC was also correlated to systolic dysfunction via end-systolic volume index (r=-0.34, p<0.0001) and stroke volume index (r=-0.31, p<0.0001), but not with longitudinal strain (r=0.009, p=0.88). Interestingly, the associations between MTGC and strain measures did not persist in multivariate analysis. Furthermore, MTGC was independently associated with LV end-systolic volume index (p=0.01, R²=0.29), LV end-diastolic volume index (p=0.04, R²=0.46), and LV mass (p=0.002, R²=0.58). Conclusions: Predicting MTGC remains a challenge in routine clinical practice, as only BMI independently correlates with increased MTGC. MTGC may play a role in LV dysfunction but does not appear to be involved in the development of subclinical strain abnormalities.


Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left/physiology , Retrospective Studies , Diabetes Mellitus, Type 2/diagnostic imaging , Triglycerides , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Ventricular Dysfunction, Left/pathology , Obesity/complications , Obesity/diagnostic imaging
9.
Metabolism ; 142: 155412, 2023 05.
Article En | MEDLINE | ID: mdl-36731720

BACKGROUND: Patients with diabetes and obesity are populations at high-risk for severe COVID-19 outcomes and have shown blunted immune responses when administered different vaccines. Here we used the 'ANRS0001S COV-POPART' French nationwide multicenter prospective cohort to investigate early humoral response to COVID-19 vaccination in the sub-cohort ('COVPOP OBEDIAB') of patients with obesity and diabetes. METHODS: Patients with diabetes (n = 390, type 1 or 2) or obesity (n = 357) who had received two vaccine doses and had no history of previous COVID-19 infection and negative anti-nucleocapsid (NCP) antibodies were included and compared against healthy subjects (n = 573). Humoral response was assessed at baseline, at one month post-first dose (M0) and one-month post-second dose (M1), through percentage of responders (positive anti-spike SARS-CoV-2 IgG antibodies (Sabs), geometric means of Sabs; BAU/mL), proportion of individuals with anti-RBD antibodies, and proportion of individuals with anti-SARS-CoV-2-specific neutralizing antibodies (Nabs). Potential clinical and biological factors associated with weak response (defined as Sabs < 264 BAU/mL) and presence of non-reactive anti-RBD antibodies at M1 were evaluated. Univariate and multivariate regressions were performed to estimate crude and adjusted coefficients with 95 % confidence intervals. Poor glycemic control was defined as HbA1c ≥ 7.5 % at inclusion. RESULTS: Patients with diabetes, particularly type 2 diabetes, and patients with obesity were less likely to have positive Sabs and anti-RBD antibodies after the first and second dose compared to controls (p < 0.001). At M1, we found Sabs seroconversion in 94.1 % of patients with diabetes versus 99.7 % in controls, anti-RBD seroconversion in 93.8 % of patients with diabetes versus 99.1 % in controls, and Nabs seroconversion in 95.7 % of patients with diabetes versus 99.6 % in controls (all p < 0.0001). Sabs and anti-RBD seroconversion at M0 and M1 were also significantly lower in obese patients than controls, at respectively 82.1 % versus 89.9 % (p = 0.001; M0 Sabs), 94.4 % versus 99.7 % (p 0.001; M1 Sabs), 79.0 % vs 86.2 % (p = 0.004 M0 anti-RBD), and 96.99 % vs 99.1 % (p = 0.012 M1 anti-RBD). The factors associated with low vaccine response (BAU < 264/mL) in patients with diabetes were chronic kidney disease (adjusted OR = 6.88 [1.77;26.77], p = 0.005) and poor glycemic control (adjusted OR = 3.92 [1.26;12.14], p = 0.018). In addition, BMI ≥ 40 kg/m2 was found to be associated with a higher vaccine response (adjusted OR = 0.10 [0.01;0.91], p = 0.040) than patients with BMI < 40 kg/m2. CONCLUSION: COVID-19 vaccine humoral response was lower in patients with obesity and diabetes one month after second dose compared to controls, especially in diabetic patients with CKD or inadequate glycemic control. These findings point to the need for post-vaccination serological checks in these high-risk populations.


COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19 Vaccines , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Obesity/complications , France/epidemiology
10.
Biomedicines ; 10(10)2022 Sep 28.
Article En | MEDLINE | ID: mdl-36289683

Aim: We aimed to analyze changes in retinal microvascularization with intensive reduction of glycated hemoglobin A1c (HbA1c) in patients with poorly controlled diabetes using quantitative optical coherence tomography angiography (OCT-A) metrics. Method: This was a retrospective observational study in patients with uncontrolled diabetes admitted to the hospital for glycemic control. A second set of 15 healthy volunteers was included to serve as a control group. OCT-A was performed at inclusion and at 3 months to measure foveal avascular zone area (FAZA), vessel density (VD) of the superficial capillary plexus (SCP) and deep capillary plexus (DCP), acircularity index (AI), and fractal dimension (FD). Results: This analysis included 35 patients (35 eyes): 28 type-2 diabetics and 7 type-1 diabetics. Mean HbA1c was 13.1 ± 2.0% at inclusion and 7.0 ± 1.5% at 3 months. In the short period from inclusion to 3 months post-inclusion, patients showed significant decrease in VD−DCP (28.8% vs. 27.8%; p = 0.014), a significant increase in FAZA (0.300 mm2 vs. 0.310 mm2; p < 0.001), and a significant increase in AI (1.31 vs. 1.34; p < 0.01). Multivariate analysis found an increase in FAZA was correlated with baseline HbA1c level and age (R2 = 0.330), and a decrease in VD-DCP was correlated with HbA1c decrease and diabetes duration (R2 = 0.286). Conclusions: Rapid glycemic control in patients with uncontrolled diabetes led to possible short-term microvascular damage that correlated to both initial and decreased HbA1c.

11.
Arterioscler Thromb Vasc Biol ; 42(8): e242-e251, 2022 08.
Article En | MEDLINE | ID: mdl-35708030

BACKGROUND: Epicardial adipose tissue (EAT) contributes to coronary artery disease (CAD). EAT presents a specific lipidomic signature, showing increased ceramides and other proinflammatory lipids content. Besides, LPL (lipoprotein lipase) activity in EAT would contribute to its expansion, supplying fatty acids to the tissue. Our aim was to evaluate the relations between LPL activity, regulators of LPL, and ceramides in EAT from CAD patients. METHODS: We studied patients undergoing coronary bypass graft (CAD, n=25) and patients without CAD (no CAD, n=14). EAT and subcutaneous AT (SAT) were obtained, tissue LPL activity and its regulator's expression (ANGPTL4, GPIHBP1 [glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1], and PPARγ [peroxisomal proliferator-activated receptor γ]) were assessed. Tissue lipidomes were evaluated by UHPLC-MS, in positive and negative ionization modes. RESULTS: LPL activity was higher in EAT from CAD (P<0.001), and in EAT than SAT in both groups (P<0.001). ANGPTL4 levels were lower, GPIHBP1 and PPARγ levels were higher in EAT from CAD (P<0.001). In both groups, EAT exhibited more ceramide (P=0.01), directly associated with LPL activity, being the strongest association with Cer18:1/24:1 (P<0.001). EAT Cer18:1/16:0 to Cer18:1/24:0 and Cer18:1/24:1 to 18:1/24:0 ratios were higher in CAD (P=0.03; P<0.001, respectively), the latter directly associated with LPL activity (r=0.63, P<0.001) GPIHBP1 levels (r=0.68, P<0.001), and inversely to EAT ANGPTL4 expression (r=-0.49, P=0.03). Pairwise partial correlation network showed associations among bioactive lipids and LPL and its regulators (P<0.001 in all cases). CONCLUSIONS: The association between LPL activity, total ceramide, and the atherogenic ceramide ratios highlights the importance of the enzyme and these bioactive lipids contributing to the different metabolic profile of EAT in CAD.


Coronary Artery Disease , Adipose Tissue/metabolism , Ceramides/metabolism , Coronary Artery Disease/metabolism , Humans , Lipoprotein Lipase/metabolism , PPAR gamma/metabolism
12.
Europace ; 24(8): 1201-1212, 2022 09 01.
Article En | MEDLINE | ID: mdl-35274140

Obesity is a heterogeneous condition, characterized by different phenotypes and for which the classical assessment with body mass index may underestimate the real impact on cardiovascular (CV) disease burden. An epidemiological link between obesity and atrial fibrillation (AF) has been clearly demonstrated and becomes even more tight when ectopic (i.e. epicardial) fat deposition is considered. Due to anatomical and functional features, a tight paracrine cross-talk exists between epicardial adipose tissue (EAT) and myocardium, including the left atrium (LA). Alongside-and even without-mechanical atrial stretch, the dysfunctional EAT may determine a pro-inflammatory environment in the surrounding myocardial tissue. This evidence has provided a new intriguing pathophysiological link with AF, which in turn is no longer considered a single entity but rather the final stage of atrial remodelling. This maladaptive process would indeed include structural, electric, and autonomic derangement that ultimately leads to overt disease. Here, we update how dysfunctional EAT would orchestrate LA remodelling. Maladaptive changes sustained by dysfunctional EAT are driven by a pro-inflammatory and pro-fibrotic secretome that alters the sinoatrial microenvironment. Structural (e.g. fibro-fatty infiltration) and cellular (e.g. mitochondrial uncoupling, sarcoplasmic reticulum fragmentation, and cellular protein quantity/localization) changes then determine an electrophysiological remodelling that also involves the autonomic nervous system. Finally, we summarize how EAT dysfunction may fit with the standard guidelines for AF. Lastly, we focus on the potential benefit of weight loss and different classes of CV drugs on EAT dysfunction, LA remodelling, and ultimately AF onset and recurrence.


Atrial Fibrillation , Atrial Remodeling , Adipose Tissue/metabolism , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Heart Atria , Humans , Obesity/complications , Pericardium
13.
Cells ; 11(6)2022 03 14.
Article En | MEDLINE | ID: mdl-35326442

The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.


Adipose Tissue , Coronary Artery Disease , Adipokines/metabolism , Adipose Tissue/metabolism , Coronary Artery Disease/metabolism , Humans , Obesity/metabolism , Pericardium/metabolism
14.
Cells ; 11(6)2022 03 18.
Article En | MEDLINE | ID: mdl-35326485

Background: To develop a deep-learning (DL) pipeline that allowed an automated segmentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and investigate the link between EAT and COVID-19 clinical outcomes. Methods: This monocentric retrospective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation. EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen therapy, intensive care unit admission and death. Results: The mean DSC for EAT volumes was 0.85 ± 0.05. For EAT volume, the mean absolute error was 11.7 ± 8.1 cm3 with a non-significant bias of −4.0 ± 13.9 cm3 and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate model providing the higher AUC to predict adverse outcome include both EAT extent and lung lesion extent (AUC = 0.805). Conclusions: A DL algorithm was developed and evaluated to obtain reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion extent was associated with adverse clinical outcomes with an AUC = 0.805.


COVID-19 , Deep Learning , Adipose Tissue/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed/methods
15.
Diagnostics (Basel) ; 12(1)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35054297

In magnetic resonance imaging (MRI), epicardial adipose tissue (EAT) overload remains often overlooked due to tedious manual contouring in images. Automated four-chamber EAT area quantification was proposed, leveraging deep-learning segmentation using multi-frame fully convolutional networks (FCN). The investigation involved 100 subjects-comprising healthy, obese, and diabetic patients-who underwent 3T cardiac cine MRI, optimized U-Net and FCN (noted FCNB) were trained on three consecutive cine frames for segmentation of central frame using dice loss. Networks were trained using 4-fold cross-validation (n = 80) and evaluated on an independent dataset (n = 20). Segmentation performances were compared to inter-intra observer bias with dice (DSC) and relative surface error (RSE). Both systole and diastole four-chamber area were correlated with total EAT volume (r = 0.77 and 0.74 respectively). Networks' performances were equivalent to inter-observers' bias (EAT: DSCInter = 0.76, DSCU-Net = 0.77, DSCFCNB = 0.76). U-net outperformed (p < 0.0001) FCNB on all metrics. Eventually, proposed multi-frame U-Net provided automated EAT area quantification with a 14.2% precision for the clinically relevant upper three quarters of EAT area range, scaling patients' risk of EAT overload with 70% accuracy. Exploiting multi-frame U-Net in standard cine provided automated EAT quantification over a wide range of EAT quantities. The method is made available to the community through a FSLeyes plugin.

18.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Article En | MEDLINE | ID: mdl-34484128

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


COVID-19/metabolism , Cardiomyopathies/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Heart Diseases/immunology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation , Intra-Abdominal Fat/pathology , Obesity/complications , Obesity/immunology , Obesity/pathology , Pericardium , Prognosis , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
20.
J Biol Chem ; 297(1): 100818, 2021 07.
Article En | MEDLINE | ID: mdl-34029592

The cleavage of the insulin receptor by ß-secretase 1 (BACE1) in the liver increases during diabetes, which contributes to reduce insulin receptor levels and impair insulin signaling. However, the precise signaling events that lead to this increased cleavage are unclear. We showed that BACE1 cleaves the insulin receptor in the early secretory pathway. Indeed, coimmunoprecipitation experiments reveal the interaction of the proforms of the two proteins. Moreover, fragments of insulin receptor are detected in the early secretory pathway and a mutated form of BACE1 that retains its prodomain cleaves an early secretory pathway-resident form of the insulin receptor. We showed that BACE1 proform levels are regulated by proteasome and/or lysosome-dependent degradation systems whose efficiencies are dependent on the O-GlcNacylation process. Our results showed that enhanced O-GlcNacylation reduces the efficiency of intracellular protein degradation systems, leading to the accumulation of the proform of BACE1 in the early secretory pathway where it cleaves the precursor of the insulin receptor. All these dysregulations are found in the livers of diabetic mice. In addition, we performed a screen of molecules according to their ability to increase levels of the insulin receptor at the surface of BACE1-overexpressing cells. This approach identified the aminosterol Claramine, which accelerated intracellular trafficking of the proform of BACE1 and increased autophagy. Both of these effects likely contribute to the reduced amount of the proform of BACE1 in the early secretory pathway, thereby reducing insulin receptor cleavage. These newly described properties of Claramine are consistent with its insulin sensitizing effect.


Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Cholestanes/pharmacology , Receptor, Insulin/metabolism , Spermine/analogs & derivatives , Animals , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Glycosylation/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Liver/pathology , Models, Biological , Protein Binding/drug effects , Proteolysis/drug effects , Proteostasis/drug effects , Secretory Pathway/drug effects , Spermine/pharmacology , Ubiquitin/metabolism , Ubiquitination/drug effects
...