Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36497174

RESUMEN

Human heart development is governed by transcription factor (TF) networks controlling dynamic and temporal gene expression alterations. Therefore, to comprehensively characterize these transcriptional regulations, day-to-day transcriptomic profiles were generated throughout the directed cardiac differentiation, starting from three distinct human- induced pluripotent stem cell lines from healthy donors (32 days). We applied an expression-based correlation score to the chronological expression profiles of the TF genes, and clustered them into 12 sequential gene expression waves. We then identified a regulatory network of more than 23,000 activation and inhibition links between 216 TFs. Within this network, we observed previously unknown inferred transcriptional activations linking IRX3 and IRX5 TFs to three master cardiac TFs: GATA4, NKX2-5 and TBX5. Luciferase and co-immunoprecipitation assays demonstrated that these five TFs could (1) activate each other's expression; (2) interact physically as multiprotein complexes; and (3) together, finely regulate the expression of SCN5A, encoding the major cardiac sodium channel. Altogether, these results unveiled thousands of interactions between TFs, generating multiple robust hypotheses governing human cardiac development.


Asunto(s)
Redes Reguladoras de Genes , Corazón , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular/genética
2.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36115027

RESUMEN

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas , Células Clonales , Técnicas de Cultivo de Célula
3.
Stem Cell Res ; 60: 102688, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101670

RESUMEN

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is an exercise and emotional stress-induced life-threatening inherited heart rhythm disorder, characterized by an abnormal cellular calcium homeostasis. Most reported cases have been linked to mutations in the gene encoding the type 2 ryanodine receptor gene, RYR2. We generated induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells (PBMC) from three CPVT-affected patients, two of them carrying p.R4959Q mutation and one carrying p.Y2476D mutation. These generated hiPSC lines are a useful model to study pathophysiological consequences of RYR2 dysfunction in humans and the molecular basis of CPVT.


Asunto(s)
Células Madre Pluripotentes Inducidas , Calcio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular
4.
Stem Cell Res ; 59: 102647, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34999420

RESUMEN

Four human induced pluripotent stem cell (hiPSC) lines have been generated from healthy control European donors, and validated. This resource represents a useful tool for stem cell-based research, as references for developmental studies and disease modeling linked to any type of human tissue and organ, in an ethnical-, sex- and age-matched context. They providea reliable in-vitro model for single cell- and tissue-based investigations, and are also a valuable tool for genome editing-based studies.

5.
Stem Cell Res ; 59: 102649, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34995842

RESUMEN

Catecholamine-induced QT prolongation (CIQTP) is an inherited cardiac disease characterized by a normal baseline ECG and a risk of sudden cardiac death by ventricular arrhythmia due to a QT prolongation that only appears during catecholergic stimulation, especially mental stress. Induced pluripotent stem cells (hiPSCs) were generated from peripheral blood mononuclear cells collected from two CIQTP-affected patients from two different families. These two hiPSC lines are a valuable model to study biological alterations due to CIQTP.

6.
Stem Cell Res ; 58: 102627, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929443

RESUMEN

Studies on animal models have shown that Irx5 is an important regulator of cardiac development and that it regulates ventricular electrical repolarization gradient in the adult heart. Mutations in IRX5 have also been linked in humans to cardiac conduction defects. In order to fully characterize the role of IRX5 during cardiac development and in cardiomyocyte function, we generated three genetically-modified human induced pluripotent stem cell lines: two knockout lines (heterozygous and homozygous) and a knockin HA-tagged line (homozygous).


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Sistemas CRISPR-Cas/genética , Heterocigoto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cardiovasc Res ; 117(9): 2092-2107, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32898233

RESUMEN

AIMS: Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function. METHODS AND RESULTS: Using human cardiac tissues, transcriptomic correlative analyses between IRX5 and genes involved in cardiac electrical activity showed that in human ventricular compartment, IRX5 expression strongly correlated to the expression of major actors of cardiac conduction, including the sodium channel, Nav1.5, and Connexin 40 (Cx40). We then generated human-induced pluripotent stem cells (hiPSCs) derived from two Hamamy syndrome-affected patients carrying distinct homozygous loss-of-function mutations in IRX5 gene. Cardiomyocytes derived from these hiPSCs showed impaired cardiac gene expression programme, including misregulation in the control of Nav1.5 and Cx40 expression. In accordance with the prolonged QRS interval observed in Hamamy syndrome patients, a slower ventricular action potential depolarization due to sodium current reduction was observed on electrophysiological analyses performed on patient-derived cardiomyocytes, confirming the functional role of IRX5 in electrical conduction. Finally, a cardiac TF complex was newly identified, composed by IRX5 and GATA4, in which IRX5 potentiated GATA4-induction of SCN5A expression. CONCLUSION: Altogether, this work unveils a key role for IRX5 in the regulation of human ventricular depolarization and cardiac electrical conduction, providing therefore new insights into our understanding of cardiac diseases.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/genética , Enfermedades Óseas/genética , Ventrículos Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Hipertelorismo/genética , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Miocitos Cardíacos/metabolismo , Miopía/genética , Factores de Transcripción/genética , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Enfermedades Óseas/metabolismo , Enfermedades Óseas/fisiopatología , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Frecuencia Cardíaca , Proteínas de Homeodominio/metabolismo , Humanos , Hipertelorismo/metabolismo , Hipertelorismo/fisiopatología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Masculino , Ratones Endogámicos C57BL , Miopía/metabolismo , Miopía/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Proteína alfa-5 de Unión Comunicante
9.
Cell Mol Biol Lett ; 25(1): 50, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33292162

RESUMEN

BACKGROUND: Human cardiac stem cells expressing the W8B2 marker (W8B2+ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. METHODS: The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2+ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2+ CSCs into cardiac myocytes. RESULTS: Our results show an entirely different electrophysiological genomic profile between W8B2+ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2+ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. CONCLUSIONS: Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.


Asunto(s)
Antígenos de Superficie/metabolismo , Calcio/metabolismo , Diferenciación Celular/fisiología , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Anciano , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Expresión Génica/fisiología , Humanos , Masculino , Células Madre Multipotentes/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998413

RESUMEN

IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities.


Asunto(s)
Calcio/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Potasio/metabolismo , Venenos de Escorpión/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Antiarrítmicos/farmacología , Canales de Calcio/metabolismo , Diferenciación Celular , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Transporte Iónico , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Piperidinas/farmacología , Piridinas/farmacología , Sulfonamidas/farmacología
11.
Biochem J ; 477(20): 3985-3999, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33034621

RESUMEN

Ryanodine receptors are responsible for the massive release of calcium from the sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the effect of MCa and its analog MCaE12A on isolated cardiac ryanodine receptor (RyR2), and showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ transients, calcium sparks and contraction on cardiomyocytes isolated from adult rats or differentiated from human-induced pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes and promotes the abnormal opening of RyR2. We also investigated the effect of MCaE12A on the pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A improves pacemaker activity of sinus node cells obtained from mice lacking L-type Cav1.3 channel, or following selective pharmacologic inhibition of calcium influx via Cav1.3. Our results identify MCaE12A as a high-affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca2+ homeostasis and dynamic of cardiac cells.


Asunto(s)
Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Venenos de Escorpión/farmacología , Nodo Sinoatrial/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes , Ratas , Ratas Wistar , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpión/química , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Porcinos
12.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114854

RESUMEN

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiología
13.
Europace ; 20(12): 2014-2020, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688407

RESUMEN

Aims: QT prolongation during mental stress test (MST) has been associated with familial idiopathic ventricular fibrillation. In long QT syndrome (LQTS), up to 30% of mutation carriers have normal QT duration. Our aim was to assess the QT response during MST, and its accuracy in the diagnosis of concealed LQTS. Methods and results: All patients who are carrier of a KCNQ1 or KCNH2 mutations without QT prolongation were enrolled. A control group was constituted of patients with negative exercise and epinephrine tests. Electrocardiogram were recorded at rest and at the maximum heart rate during MST and reviewed by two physicians. Among the 70 patients enrolled (median age 41±2.1 years, 46% male), 36 were mutation carrier for LQTS (20 KCNQ1 and 16 KCNH2), and 34 were controls. KCNQ1 and KCNH2 mutation carriers presented a longer QT interval at baseline [405(389; 416) and 421 (394; 434) ms, respectively] compared with the controls [361(338; 375)ms; P < 0.0001]. QT duration during MST varied by 9 (4; 18) ms in KCNQ1, 3 (-6; 16) ms in KCNH2, and by -22 (-29; -17) ms in controls (P < 0.0001). These QT variations were independent of heart rate (P < 0.3751). Receiver operating characteristic curve analysis identified a cut-off value of QT variation superior to -11 ms as best predictor of LQTS. It provided 97% sensitivity and 97% specificity of QT prolongation in the diagnosis of LQTS. Conclusion: We identified a paradoxical response of the QT interval during MST in LQTS. Easy to assess, MST may be efficient to unmask concealed LQTS in patients at risk of this pathology.


Asunto(s)
Electrocardiografía , Frecuencia Cardíaca/genética , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ2/genética , Síndrome de QT Prolongado/diagnóstico , Mutación , Estrés Psicológico/fisiopatología , Fibrilación Ventricular/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Masculino , Conceptos Matemáticos , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Riesgo , Estrés Psicológico/diagnóstico , Estrés Psicológico/psicología , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología , Adulto Joven
14.
Int J Biochem Cell Biol ; 89: 57-70, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28587927

RESUMEN

The ß subunits of Voltage-Gated Calcium Channel (VGCC) are cytosolic proteins that interact with the VGCC pore -forming subunit and participate in the trafficking of the channel to the cell membrane and in ion influx regulation. ß subunits also exert functions independently of their binding to VGCC by translocation to the cell nucleus including the control of gene expression. Mutations of the neuronal Cacnb4 (ß4) subunit are linked to human neuropsychiatric disorders including epilepsy and intellectual disabilities. It is believed that the pathogenic phenotype induced by these mutations is associated with channel-independent functions of the ß4 subunit. In this report, we investigated the role of ß4 subunit in cell proliferation and cell cycle progression and examined whether these functions could be altered by a pathogenic mutation. To this end, stably transfected Chinese Hamster Ovary (CHO-K1) cells expressing either rat full-length ß4 or the rat C-terminally truncated epileptic mutant variant ß1-481 were generated. The subcellular localization of both proteins differed significantly. Full-length ß4 localizes almost exclusively in the cell nucleus and concentrates into the nucleolar compartment, while the C-terminal-truncated ß1-481 subunit was less concentrated within the nucleus and absent from the nucleoli. Cell proliferation was found to be reduced by the expression of ß4, while it was unaffected by the epileptic mutant. Also, full-length ß4 interfered with cell cycle progression by presumably preventing cells from entering the S-phase via a mechanism that partially involves endogenous B56δ, a regulatory subunit of the phosphatase 2A (PP2A) that binds ß4 but not ß1-481. Analysis of ß4 subcellular distribution during the cell cycle revealed that the protein is highly expressed in the nucleus at the G1/S transition phase and that it is translocated out of the nucleus during chromatin condensation and cell division. These results suggest that nuclear accumulation of ß4 at the G1/S transition phase affects the progression into S-phase resulting in a decrease in the rate of cell proliferation. Regulation of the cell cycle exit is a critical step in determining the number of neuronal precursors and neuronal differentiation suggesting that mutations of the ß4 subunit could affect neural development and formation of the mature central nervous system.


Asunto(s)
Canales de Calcio/metabolismo , Animales , Células CHO , Canales de Calcio/genética , Ciclo Celular , Nucléolo Celular/metabolismo , Proliferación Celular , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Ratones , Mutación , Transporte de Proteínas
15.
J Mol Cell Cardiol ; 99: 1-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27590098

RESUMEN

Patients with HIV present with a higher prevalence of QT prolongation, of which molecular bases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulates viral genes expression and is required for efficient HIV replication. Tat is actively secreted into the blood by infected T-cells and affects organs such as the heart. Tat has been shown to alter cardiac repolarization in animal models but how this is mediated and whether this is also the case in human cells is unknown. In the present study, we show that Tat transfection in heterologous expression systems led to a decrease in hERG (underlying cardiac IKr) and human KCNE1-KCNQ1 (underlying cardiac IKs) currents and to an acceleration of their deactivation. This is consistent with a decrease in available phosphatidylinositol-(4,5)-bisphosphate (PIP2). A mutant Tat, unable to bind PIP2, did not reproduce the observed effects. In addition, WT-Tat had no effect on a mutant KCNQ1 which is PIP2-insensitive, further confirming the hypothesis. Twenty-four-hour incubation of human induced pluripotent stem cells-derived cardiomyocytes with Wild-type Tat reduced IKr and accelerated its deactivation. Concordantly, this Tat incubation led to a prolongation of the action potential (AP) duration. Events of AP alternans were also recorded in the presence of Tat, and were exacerbated at a low pacing cycle length. Altogether, these data obtained on human K+ channels both in heterologous expression systems and in human cardiomyocytes suggest that Tat sequesters PIP2, leading to a reduction of IKr and IKs, and provide a molecular mechanism for QT prolongation in HIV-infected patients.


Asunto(s)
Potenciales de Acción , Fosfatidilinositol 4,5-Difosfato/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Células COS , Diferenciación Celular , Línea Celular , Canal de Potasio ERG1/metabolismo , Fenómenos Electrofisiológicos , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Bone Rep ; 5: 86-95, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27453922

RESUMEN

Cranial malformations are a significant cause of perinatal morbidity and mortality. Iroquois homeobox transcription factors (IRX) are expressed early in bone tissue formation and facilitate patterning and mineralization of the skeleton. Mice lacking Irx5 appear grossly normal, suggesting that redundancy within the Iroquois family. However, global loss of both Irx3 and Irx5 in mice leads to significant skeletal malformations and embryonic lethality from cardiac defects. Here, we study the bone-specific functions of Irx3 and Irx5 using Osx-Cre to drive osteoblast lineage-specific deletion of Irx3 in Irx5(-/-) mice. Although we found that the Osx-Cre transgene alone could also affect craniofacial mineralization, newborn Irx3 (flox/flox) /Irx5(-/-)/Osx-Cre (+) mice displayed additional mineralization defects in parietal, interparietal, and frontal bones with enlarged sutures and reduced calvarial expression of osteogenic genes. Newborn endochondral long bones were largely unaffected, but we observed marked reductions in 3-4-week old bone mineral content of Irx3 (flox/flox) /Irx5(-/-)/Osx-Cre (+) mice. Our findings indicate that IRX3 and IRX5 can work together to regulate mineralization of specific cranial bones. Our results also provide insight into the causes of the skeletal changes and mineralization defects seen in Hamamy syndrome patients carrying mutations in IRX5.

17.
J Am Heart Assoc ; 4(9): e002159, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330336

RESUMEN

BACKGROUND: Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients' genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell-derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients' specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients' specific arrhythmia mechanisms. METHODS AND RESULTS: Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method.UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial- and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient's UhiPS-CMs to the mother's UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier K(+) current (IKr). This phenotype gave rise to action potential prolongation and arrhythmias. CONCLUSIONS: UhiPS cells from patients carrying ion channel mutations can be used as novel tools to differentiate functional CMs that recapitulate cardiac arrhythmia phenotypes.


Asunto(s)
Diferenciación Celular , Síndrome de QT Prolongado/orina , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Medicina de Precisión/métodos , Potenciales de Acción , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Reprogramación Celular , Canal de Potasio ERG1 , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/genética , Femenino , Predisposición Genética a la Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Masculino , Persona de Mediana Edad , Mutación Missense , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Fenotipo , Células Madre Pluripotentes/patología , Orina/citología , Adulto Joven
18.
PLoS One ; 9(1): e82179, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427266

RESUMEN

RATIONALE: Structural differences between ventricular regions may not be the sole determinant of local ventricular fibrillation (VF) dynamics and molecular remodeling may play a role. OBJECTIVES: To define regional ion channel expression in myopathic hearts compared to normal hearts, and correlate expression to regional VF dynamics. METHODS AND RESULTS: High throughput real-time RT-PCR was used to quantify the expression patterns of 84 ion-channel, calcium cycling, connexin and related gene transcripts from sites in the LV, septum, and RV in 8 patients undergoing transplantation. An additional eight non-diseased donor human hearts served as controls. To relate local ion channel expression change to VF dynamics localized VF mapping was performed on the explanted myopathic hearts right adjacent to sampled regions. Compared to non-diseased ventricles, significant differences (p<0.05) were identified in the expression of 23 genes in the myopathic LV and 32 genes in the myopathic RV. Within the myopathic hearts significant regional (LV vs septum vs RV) expression differences were observed for 13 subunits: Nav1.1, Cx43, Ca3.1, Cavα2δ2, Cavß2, HCN2, Na/K ATPase-1, CASQ1, CASQ2, RYR2, Kir2.3, Kir3.4, SUR2 (p<0.05). In a subset of genes we demonstrated differences in protein expression between control and myopathic hearts, which were concordant with the mRNA expression profiles for these genes. Variability in the expression of Cx43, hERG, Na(+)/K(+) ATPase ß1 and Kir2.1 correlated to variability in local VF dynamics (p<0.001). To better understand the contribution of multiple ion channel changes on VF frequency, simulations of a human myocyte model were conducted. These simulations demonstrated the complex nature by which VF dynamics are regulated when multi-channel changes are occurring simultaneously, compared to known linear relationships. CONCLUSIONS: Ion channel expression profile in myopathic human hearts is significantly altered compared to normal hearts. Multi-channel ion changes influence VF dynamic in a complex manner not predicted by known single channel linear relationships.


Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiopatología , Canales Iónicos/genética , Miocardio/metabolismo , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología , Adulto , Simulación por Computador , Femenino , Perfilación de la Expresión Génica , Hemodinámica , Humanos , Canales Iónicos/metabolismo , Masculino , Persona de Mediana Edad , Modelos Biológicos , Proteómica , Transcripción Genética , Transcriptoma , Fibrilación Ventricular/metabolismo
19.
Development ; 139(21): 4007-19, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22992950

RESUMEN

The Iroquois homeobox (Irx) homeodomain transcription factors are important for several aspects of embryonic development. In the developing heart, individual Irx genes are important for certain postnatal cardiac functions, including cardiac repolarization (Irx5) and rapid ventricular conduction (Irx3). Irx genes are expressed in dynamic and partially overlapping patterns in the developing heart. Here we show in mice that Irx3 and Irx5 have redundant function in the endocardium to regulate atrioventricular canal morphogenesis and outflow tract formation. Our data suggest that direct transcriptional repression of Bmp10 by Irx3 and Irx5 in the endocardium is required for ventricular septation. A postnatal deletion of Irx3 and Irx5 in the myocardium leads to prolongation of atrioventricular conduction, due in part to activation of expression of the Na(+) channel protein Nav1.5. Surprisingly, combined postnatal loss of Irx3 and Irx5 results in a restoration of the repolarization gradient that is altered in Irx5 mutant hearts, suggesting that postnatal Irx3 activity can be repressed by Irx5. Our results have uncovered complex genetic interactions between Irx3 and Irx5 in embryonic cardiac development and postnatal physiology.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Electrofisiología , Femenino , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Inmunoprecipitación , Ratones , Embarazo , Factores de Transcripción/genética
20.
Proc Natl Acad Sci U S A ; 108(33): 13576-81, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21825130

RESUMEN

Rapid electrical conduction in the His-Purkinje system tightly controls spatiotemporal activation of the ventricles. Although recent work has shed much light on the regulation of early specification and morphogenesis of the His-Purkinje system, less is known about how transcriptional regulation establishes impulse conduction properties of the constituent cells. Here we show that Iroquois homeobox gene 3 (Irx3) is critical for efficient conduction in this specialized tissue by antithetically regulating two gap junction-forming connexins (Cxs). Loss of Irx3 resulted in disruption of the rapid coordinated spread of ventricular excitation, reduced levels of Cx40, and ectopic Cx43 expression in the proximal bundle branches. Irx3 directly represses Cx43 transcription and indirectly activates Cx40 transcription. Our results reveal a critical role for Irx3 in the precise regulation of intercellular gap junction coupling and impulse propagation in the heart.


Asunto(s)
Fascículo Atrioventricular/fisiología , Sistema de Conducción Cardíaco , Proteínas de Homeodominio/fisiología , Ramos Subendocárdicos/fisiología , Factores de Transcripción/fisiología , Animales , Conexina 43/genética , Conexinas/genética , Uniones Comunicantes , Regulación de la Expresión Génica , Genes Homeobox , Ventrículos Cardíacos , Ratones , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA