Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
NAR Cancer ; 6(1): zcad062, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38213997

RESUMEN

Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.

2.
Proc Natl Acad Sci U S A ; 121(1): e2315242121, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154064

RESUMEN

High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.


Asunto(s)
Neuroblastoma , Proteínas Tirosina Quinasas Receptoras , Humanos , Ratones , Animales , Quinasa de Linfoma Anaplásico/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proliferación Celular , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Reparación del ADN , Daño del ADN , Proteínas de la Ataxia Telangiectasia Mutada/genética
3.
Proc Natl Acad Sci U S A ; 120(8): e2216479120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791109

RESUMEN

Anaplastic lymphoma kinase (ALK) fusion variants in Non-Small Cell Lung Cancer (NSCLC) consist of numerous dimerizing fusion partners. Retrospective investigations suggest that treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs dependent on the fusion variant present in the patient tumor. Therefore, understanding the oncogenic signaling networks driven by different ALK fusion variants is important. To do this, we developed controlled inducible cell models expressing either Echinoderm Microtubule Associated Protein Like 4 (EML4)-ALK-V1, EML4-ALK-V3, Kinesin Family Member 5B (KIF5B)-ALK, or TRK-fused gene (TFG)-ALK and investigated their transcriptomic and proteomic responses to ALK activity modulation together with patient-derived ALK-positive NSCLC cell lines. This allowed identification of both common and isoform-specific responses downstream of these four ALK fusions. An inflammatory signature that included upregulation of the Serpin B4 serine protease inhibitor was observed in both ALK fusion inducible and patient-derived cells. We show that Signal transducer and activator of transcription 3 (STAT3), Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP1) are major transcriptional regulators of SERPINB4 downstream of ALK fusions. Upregulation of SERPINB4 promotes survival and inhibits natural killer cell-mediated cytotoxicity, which has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Serpinas , Humanos , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Oncogenes , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Proteómica , Estudios Retrospectivos , Serpinas/genética
4.
Nat Commun ; 12(1): 6813, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819497

RESUMEN

High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Neuroblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Morfolinas/farmacología , Morfolinas/uso terapéutico , Neuroblastoma/genética , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , RNA-Seq , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921066

RESUMEN

Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.

6.
Mar Genomics ; 24 Pt 3: 245-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26321383

RESUMEN

Coscinasterias is a cosmopolitan genus of large asteroid sea stars with the ability of somatic fission as a clonal reproductive strategy. During fission, the animals tear themselves apart across their central disc, where the lost body parts are regenerated afterwards. Here, we have sequenced and subsequently analysed the transcriptome of the coelomic epithelium of a clonal Coscinasterias muricata specimen from New Zealand. Out of the total 389,768 raw reads, 11,344 contigs were assembled and grouped into functions. Raw read and assembled contig sequences are available at NCBI (BioSample: SAMN03371637), while the annotated assembly can be accessed through the project transcriptome browser (compgen.bio.ub.edu/gbrowse/starfish_transcriptome/). Our data is valuable for future detailed exploration of the coelomic epithelium functions as well as for a better understanding of sea star physiology.


Asunto(s)
Epitelio/metabolismo , Estrellas de Mar/metabolismo , Transcriptoma , Animales , Estrellas de Mar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...