Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 14(3): e1006945, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29601598

RESUMEN

Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhoea by evading innate immunity. Colonizing the mucosa of the reproductive tract depends on the bacterial outer membrane porin, PorB, which is essential for ion and nutrient uptake. PorB is also targeted to host mitochondria and regulates apoptosis pathways to promote infections. How PorB traffics from the outer membrane of N. gonorrhoeae to mitochondria and whether it modulates innate immune cells, such as macrophages, remains unclear. Here, we show that N. gonorrhoeae secretes PorB via outer membrane vesicles (OMVs). Purified OMVs contained primarily outer membrane proteins including oligomeric PorB. The porin was targeted to mitochondria of macrophages after exposure to purified OMVs and wild type N. gonorrhoeae. This was associated with loss of mitochondrial membrane potential, release of cytochrome c, activation of apoptotic caspases and cell death in a time-dependent manner. Consistent with this, OMV-induced macrophage death was prevented with the pan-caspase inhibitor, Q-VD-PH. This shows that N. gonorrhoeae utilizes OMVs to target PorB to mitochondria and to induce apoptosis in macrophages, thus affecting innate immunity.


Asunto(s)
Apoptosis , Membrana Celular/metabolismo , Gonorrea/patología , Macrófagos/patología , Mitocondrias/patología , Neisseria gonorrhoeae/patogenicidad , Porinas/metabolismo , Animales , Gonorrea/microbiología , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/microbiología , Porinas/genética
3.
Biochim Biophys Acta ; 1840(4): 1246-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23994494

RESUMEN

BACKGROUND: Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). SCOPE OF REVIEW: Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. MAJOR CONCLUSIONS: There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. GENERAL SIGNIFICANCE: We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.


Asunto(s)
Evolución Biológica , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(49): E3358-66, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23151513

RESUMEN

The controlled biogenesis of mitochondria is a key cellular system coordinated with the cell division cycle, and major efforts in systems biology currently are directed toward understanding of the control points at which this coordination is achieved. Here we present insights into the function, evolution, and regulation of mitochondrial biogenesis through the study of the protein import machinery in the human fungal pathogen, Candida albicans. Features that distinguish C. albicans from baker's yeast (Saccharomyces cerevisiae) include the stringency of metabolic control at the level of oxygen consumption, the potential for ATP exchange through the porin in the outer membrane, and components and domains in the sorting and assembling machinery complex, a molecular machine that drives the assembly of proteins in the outer mitochondrial membrane. Analysis of targeting sequences and assays of mitochondrial protein import show that components of the electron transport chain are imported by distinct pathways in C. albicans and S. cerevisiae, representing an evolutionary rewiring of mitochondrial import pathways. We suggest that studies using this pathogen as a model system for mitochondrial biogenesis will greatly enhance our knowledge of how mitochondria are made and controlled through the course of the cell-division cycle.


Asunto(s)
Evolución Biológica , Candida albicans/fisiología , Proteínas Portadoras/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Análisis por Conglomerados , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Cadenas de Markov , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Consumo de Oxígeno/fisiología , Filogenia , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae , Especificidad de la Especie
5.
Int J Mol Sci ; 13(7): 8038-8050, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942688

RESUMEN

ß-barrel proteins are the highly abundant in the outer membranes of Gram-negative bacteria and the mitochondria in eukaryotes. The assembly of ß-barrels is mediated by two evolutionary conserved machineries; the ß-barrel Assembly Machinery (BAM) in Gram-negative bacteria; and the Sorting and Assembly Machinery (SAM) in mitochondria. Although the BAM and SAM have functionally conserved roles in the membrane integration and folding of ß-barrel proteins, apart from the central BamA and Sam50 proteins, the remaining components of each of the complexes have diverged remarkably. For example all of the accessory components of the BAM complex characterized to date are located in the bacterial periplasm, on the same side as the N-terminal domain of BamA. This is the same side of the membrane as the substrates that are delivered to the BAM. On the other hand, all of the accessory components of the SAM complex are located on the cytosolic side of the membrane, the opposite side of the membrane to the N-terminus of Sam50 and the substrate receiving side of the membrane. Despite the accessory subunits being located on opposite sides of the membrane in each system, it is clear that each system is functionally equivalent with bacterial proteins having the ability to use the eukaryotic SAM and vice versa. In this review, we summarize the similarities and differences between the BAM and SAM complexes, highlighting the possible selecting pressures on bacteria and eukaryotes during evolution. It is also now emerging that bacterial pathogens utilize the SAM to target toxins and effector proteins to host mitochondria and this will also be discussed from an evolutionary perspective.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/química , Evolución Molecular , Humanos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas
6.
Artículo en Inglés | MEDLINE | ID: mdl-22919683

RESUMEN

More than 50% of the world's population is infected with Helicobacter pylori (H. pylori). Chronic infection with this Gram-negative pathogen is associated with the development of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes many proteinaceous factors that are important for initial colonization and subsequent persistence in the host stomach. One of the major protein toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55 subunits) binds to host cells and is internalized, causing severe "vacuolation" characterized by the accumulation of large vesicles that possess hallmarks of both late endosomes and early lysosomes. The development of "vacuoles" has been attributed to the formation of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it has recently become clear that VacA also directly affects mitochondrial function. Earlier studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter mitochondria to modulate organelle function. This raised the possibility that a mechanism separate from pore formation may be responsible for the effects of VacA on mitochondria, as crystallography studies and structural modeling predict that both subunits are required for a physiologically stable pore. It has also been suggested that the mitochondrial effects observed are due to indirect effects on pro-apoptotic proteins and direct effects on mitochondrial morphology-related processes. Other studies have shown that both the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived mitochondria raising the possibility that they could re-assemble to form a pore. Our review summarizes and consolidates the recent advances in VacA toxin research, with focus on the outstanding controversies in the field and the key remaining questions that need to be addressed.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Células Eucariotas/efectos de los fármacos , Helicobacter pylori/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/toxicidad , Humanos , Mitocondrias/efectos de los fármacos , Vacuolas/metabolismo
7.
Hum Mutat ; 33(10): 1408-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22644621

RESUMEN

Mutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene can cause early-onset familial Parkinson disease (PD). PINK1 encodes a neuroprotective protein kinase localized at the mitochondria, and its involvement in regulating mitochondrial dynamics, trafficking, structure, and function is well documented. Owing to the lack of information on structure and biochemical properties for PINK1, exactly how PINK1 exerts its neuroprotective function and how the PD-causative mutations impact on PINK1 structure and function remain unclear. As an approach to address these questions, we conducted bioinformatic analyses of the mitochondrial targeting, the transmembrane, and kinase domains of PINK1 to predict the motifs governing its regulation and function. Our report sheds light on how PINK1 is targeted to the mitochondria and how PINK1 is cleaved by mitochondrial peptidases. Moreover, it includes a potential optimal phosphorylation sequence preferred by the PINK1 kinase domain. On the basis of the results of our analyses, we predict how the PD-causative mutations affect processing of PINK1 in the mitochondria, PINK1 kinase activity, and substrate specificity. In summary, our results provide a conceptual framework for future investigation of the structural and biochemical basis of regulation and the neuroprotective mechanism of PINK1.


Asunto(s)
Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Animales , Dominio Catalítico , Humanos , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Especificidad por Sustrato
8.
IUBMB Life ; 64(5): 397-401, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22496061

RESUMEN

Bacterial infection has enormous global social and economic impacts stemming from effects on human health and agriculture. Although there are still many unanswered questions, decades of research has uncovered many of the pathogenic mechanisms at play. It is now clear that bacterial pathogens produce a plethora of proteins known as "toxins" and "effectors" that target a variety of physiological host processes during the course of infection. One of the targets of host targeted bacterial toxins and effectors are the mitochondria. The mitochondrial organelles are major players in many biological functions, including energy conversion to ATP and cell death pathways, which inherently makes them targets for bacterial proteins. We present a summary of the toxins targeted to mitochondria and for those that have been studied in finer detail, we also summarize what we know about the mechanisms of targeting and finally their action at the organelle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mitocondrias/fisiología , Animales , Infecciones Bacterianas , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Transporte de Proteínas
9.
PLoS Pathog ; 8(1): e1002459, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22241989

RESUMEN

The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Proteínas Portadoras/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfato , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Prueba de Complementación Genética , Células HeLa , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/genética , Proteínas de la Membrana/genética , Neorickettsia sennetsu/genética , Neorickettsia sennetsu/metabolismo , Neorickettsia sennetsu/patogenicidad , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Mol Microbiol ; 82(4): 976-87, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22032638

RESUMEN

Mitochondria originated from Gram-negative bacteria through endosymbiosis. In modern day mitochondria, the Sorting and Assembly Machinery (SAM) is responsible for eukaryotic ß-barrel protein assembly in the mitochondrial outer membrane. The SAM is the functional equivalent of the ß-barrel assembly machinery found in the outer membrane of Gram-negative bacteria. In this study we examined the import pathway of a pathogenic bacterial protein, PorB, which is targeted from pathogenic Neisseria to the host mitochondria. We have developed a new method for measurement of PorB assembly into mitochondria that relies on the mobility shift exhibited by bacterial ß-barrel proteins once folded and separated under semi-native electrophoretic conditions. We show that PorB is targeted to the outer mitochondrial membrane with a dependence on the intermembrane space shuttling chaperones and the core component of the SAM, Sam50, which is a functional homologue of BamA that is required for PorB assembly in bacteria. The peripheral subunits of the SAM, Sam35 and Sam37, which are essential for eukaryotic ß-barrel protein assembly but do not have distinguishable functional homologues in bacteria, are not required for PorB assembly in eukaryotes. This shows that PorB uses an evolutionary conserved 'bacterial like' mechanism to infiltrate the host mitochondrial outer membrane.


Asunto(s)
Interacciones Huésped-Patógeno , Membranas Mitocondriales/metabolismo , Porinas/metabolismo , Multimerización de Proteína , Ensayo de Cambio de Movilidad Electroforética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidad , Transporte de Proteínas
11.
Mol Biol Evol ; 28(5): 1581-91, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21081480

RESUMEN

The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.


Asunto(s)
Eucariontes/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Transporte de Proteínas/genética , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Eucariontes/ultraestructura , Evolución Molecular , Transferencia de Gen Horizontal , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
12.
J Mol Biol ; 401(5): 792-8, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20615415

RESUMEN

Helicobacter pylori infection causes peptic ulcers and gastric cancer. A major toxin secreted by H. pylori is the bipartite vacuolating cytotoxin A, VacA. The toxin is believed to enter host cells as two subunits: the p55 subunit (55 kDa) and the p33 subunit (33 kDa). At the biochemical level, it has been shown that VacA forms through the assembly of large multimeric pores composed of both the p33 subunit and the p55 subunit in biological membranes. One of the major target organelles of VacA is the mitochondria. Since only the p33 subunit has been reported to be translocated into mitochondria and the p55 subunit is not imported, it has been contentious as to whether VacA assembles into pores in a mitochondrial membrane. Here we show the p55 protein is imported into the mitochondria along with the p33 protein subunit. The p33 subunit integrally associates with the mitochondrial inner membrane, and both the p33 subunit and the p55 subunit are exposed to the mitochondrial intermembrane space. Their colocalization suggests that they could reassemble and form a pore in the inner mitochondrial membrane.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mitocondrias/metabolismo , Animales , Proteínas Bacterianas/química , Secuencia de Bases , Cartilla de ADN , Ratones , Reacción en Cadena de la Polimerasa , Transducción de Señal
13.
PLoS One ; 5(1): e8619, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20062535

RESUMEN

Mitochondria are organelles derived from an intracellular alpha-proteobacterium. The biogenesis of mitochondria relies on the assembly of beta-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an alpha-proteobacterium, and the BAM (beta-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A approximately 150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Caulobacter crescentus/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido
14.
Biometals ; 22(1): 177-90, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19130269

RESUMEN

The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cobre/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/genética , Animales , Transporte Biológico , Degeneración Hepatolenticular/metabolismo , Hipocampo/citología , Homeostasis , Humanos , Síndrome del Pelo Ensortijado/metabolismo , Neuronas/metabolismo
15.
J Cell Biol ; 183(2): 195-202, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18852299

RESUMEN

The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40.


Asunto(s)
Disulfuros/metabolismo , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Oxidorreductasas/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
16.
J Biol Chem ; 283(44): 29723-9, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18779329

RESUMEN

Mitochondrial precursor proteins are directed into the intermembrane space via two different routes, the presequence pathway and the redox-dependent MIA pathway. The pathways were assumed to be independent and transport different proteins. We report that the intermembrane space receptor Mia40 can switch between both pathways. In fungi, Mia40 is synthesized as large protein with an N-terminal presequence, whereas in metazoans and plants, Mia40 consists only of the conserved C-terminal domain. Human MIA40 and the C-terminal domain of yeast Mia40 (termed Mia40(core)) rescued the viability of Mia40-deficient yeast independently of the presence of a presequence. Purified Mia40(core) was imported into mitochondria via the MIA pathway. With cells expressing both full-length Mia40 and Mia40(core), we demonstrate that yeast Mia40 contains dual targeting information, directing the large precursor onto the presequence pathway and the smaller Mia40(core) onto the MIA pathway, raising interesting implications for the evolution of mitochondrial protein sorting.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Animales , Humanos , Potenciales de la Membrana , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Modelos Biológicos , Oxidación-Reducción , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Temperatura
17.
Methods Mol Biol ; 390: 99-117, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17951683

RESUMEN

Mitochondria contain a small genome that codes for approx 1% of the total number of proteins that reside in the mitochondria. Hence, most mitochondrial proteins are encoded for by the nuclear genome. After transcription in the nucleus these proteins are synthesized by cytosolic ribosomes. Like proteins destined for other organellar compartments, mitochondrially destined proteins possess targeting signals within their primary or secondary structure that direct them to the organelle with the assistance of cytosolic factors. Very specialized and discriminatory protein translocase complexes in the mitochondrial membranes, intermembrane space, and matrix are then engaged for the translocation, sorting, integration, processing, and folding of the newly imported proteins. The principles of protein targeting into mitochondria have been and are still being unraveled, mostly by studies with the yeast Saccharomyces cerevisiae and the fungus Neurospora crassa. In this chapter the major principles of mitochondrial protein targeting as currently understood will be discussed as a foundation for the experimental methods discussed later in this volume.


Asunto(s)
Mitocondrias/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Biológicos , Transporte de Proteínas , Ribosomas/metabolismo
18.
J Biol Chem ; 282(31): 22472-80, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17553782

RESUMEN

The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.


Asunto(s)
Cisteína/química , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Disulfuros , Escherichia coli/metabolismo , Histidina/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Genéticos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
19.
J Mol Biol ; 365(3): 612-20, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17095012

RESUMEN

Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/química , Especificidad por Sustrato
20.
J Mol Biol ; 353(3): 485-92, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16181637

RESUMEN

The proteins of the mitochondrial intermembrane space (IMS) are encoded by nuclear genes and synthesized on cytosolic ribosomes. While some IMS proteins are imported by the classical presequence pathway that involves the membrane potential deltapsi across the inner mitochondrial membrane and proteolytic processing to release the mature protein to the IMS, the import of numerous small IMS proteins is independent of a deltapsi and does not include proteolytic processing. The biogenesis of small IMS proteins requires an essential mitochondrial IMS import and assembly protein, termed Mia40. Here, we show that Erv1, a further essential IMS protein that has been reported to function as a sulfhydryl oxidase and participate in biogenesis of Fe/S proteins, is also required for the biogenesis of small IMS proteins. We generated a temperature-sensitive yeast mutant of Erv1 and observed a strong reduction of the levels of small IMS proteins upon shift of the cells to non-permissive temperature. Isolated erv1-2 mitochondria were selectively impaired in import of small IMS proteins while protein import pathways to other mitochondrial subcompartments were not affected. Small IMS precursor proteins remained associated with Mia40 in erv1-2 mitochondria and were not assembled into mature oligomeric complexes. Moreover, Erv1 associated with Mia40 in a reductant-sensitive manner. We conclude that two essential proteins, Mia40 and Erv1, cooperate in the assembly pathway of small proteins of the mitochondrial IMS.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA