Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
ACS Omega ; 9(7): 7375-7392, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38405516

Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.

2.
Tissue Eng Regen Med ; 21(1): 21-52, 2024 01.
Article En | MEDLINE | ID: mdl-37882981

Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.


Bioprinting , Liver Diseases , Humans , Tissue Engineering/methods , Bioprinting/methods , Printing, Three-Dimensional , Liver Diseases/therapy
3.
J Mother Child ; 27(1): 64-71, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37409658

BACKGROUND: The purpose of this study was to determine the impact of early exposure to play materials on motor development in high-risk infants. MATERIALS AND METHODS: A 1:1 parallel group randomised control study was conducted. A total of 36 participants were recruited, with 18 in each group. The intervention lasted 6 weeks for both groups, with follow-ups in the 2nd and 4th weeks. The Peabody Developmental Motor Scale 2nd Edition (PDMS-2) was used as an outcome measure. The data was analysed using the Likelihood Ratio test, Chi-square test, independent sample t-test, and paired t-test. RESULTS: There was no difference between the groups except for the raw reflex scores (t = 3.29, p = 0.002), raw stationary scores (t = 4.26, p < 0.001), standard stationary scores (t = 2.57, p = 0.015), and Gross Motor Quotient (GMQ) (t = 3.275, p = 0.002). Statistical significance within the experimental group was observed in the raw reflex (t = -5.16, p < 0.001), stationary (t = -10.5, p < 0.001), locomotion (t = -5.67, p < 0.001), grasp (t = -4.68, p < 0.001), and visual motor (t = -5.03, p < 0.001) scores, as well as the standard stationary (t = -2.87, p = 0.010), locomotion (t = -3.43, p = 0.003), grasp (t = -3.28, p = 0.004), and visual motor (t = -5.03, p < 0.001) scores. Quotients were the GMQ (t = -7.31, p < 0.001), Total Motor Quotient (TMQ) (t = -5.71, p < 0.001), Fine Motor Quotient (FMQ) (t = -6.48, p < 0.001). Conclusions: The current study concludes that a six-week treatment of early exposure to age-appropriate toys is advantageous in enhancing motor development in high-risk neonates.


Child Development , Motor Skills , Infant, Newborn , Humans , Infant , Locomotion
...