Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Cell Rep ; 39(1): 110621, 2022 04 05.
Article En | MEDLINE | ID: mdl-35385743

Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDR+CD235a/b+ mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDR+CD235a/b- mesoderm. When transplanted into immunocompromised hemophilia A mice (NSG-HA), these VECs engraft the liver, proliferate, and mature to functional LSECs that secrete bioactive FVIII capable of correcting the bleeding phenotype. Together, these findings highlight the importance of appropriate mesoderm induction for generating hPSC-derived LSECs capable of functioning in a preclinical model of hemophilia A.


Endothelial Progenitor Cells , Hemophilia A , Pluripotent Stem Cells , Animals , Hemophilia A/genetics , Hemophilia A/therapy , Hepatocytes , Liver , Mice
3.
Adv Healthc Mater ; 10(8): e2001746, 2021 04.
Article En | MEDLINE | ID: mdl-33694327

Tubular biological structures consisting of extracellular matrix (ECM) proteins and cells are basic functional units of all organs in animals and humans. ECM protein solutions at low concentrations (5-10 milligrams per milliliter) are abundantly used in 3D cell culture. However, their poor "printability" and minute-long gelation time have made the direct extrusion of tubular structures in bioprinting applications challenging. Here, this limitation is overcome and the continuous, template-free conversion of low-concentration collagen, elastin, and fibrinogen solutions into tubular structures of tailored size and radial, circumferential and axial organization is demonstrated. The approach is enabled by a microfabricated printhead for the consistent circumferential distribution of ECM protein solutions and lends itself to scalable manufacture. The attached confinement accommodates minute-long residence times for pH, temperature, light, ionic and enzymatic gelation. Chip hosted ECM tubular structures are amenable to perfusion with aqueous solutions and air, and cyclic stretching. Predictive collapse and reopening in a crossed-tube configuration promote all-ECM valves and pumps. Tissue level function is demonstrated by factors secreted from cells embedded within the tube wall, as well as endothelial or epithelial barriers lining the lumen. The described approaches are anticipated to find applications in ECM-based organ-on-chip and biohybrid structures, hydraulic actuators, and soft machines.


Bioprinting , Tissue Engineering , Animals , Collagen , Elastin , Extracellular Matrix , Humans
4.
Cell Stem Cell ; 27(2): 254-269.e9, 2020 08 06.
Article En | MEDLINE | ID: mdl-32640183

Liver sinusoidal endothelial cells (LSECs) form a highly specialized microvasculature that plays a critical role in liver function and disease. To better understand this role, we developed a strategy to generate LSECs from human pluripotent stem cells (hPSCs) by first optimizing the specification of arterial and venous angioblasts and derivative endothelial populations. Induction of a LSEC-like fate by hypoxia, cyclic AMP (cAMP) agonism, and transforming growth factor ß (TGF-ß) inhibition revealed that venous endothelial cells responded more rapidly and robustly than the arterial cells to upregulate LSEC markers and functions in vitro. Upon intrahepatic transplantation in neonates, venous angioblasts engrafted the liver and generated mature, fenestrated LSECs with scavenger functions and molecular profiles of primary human LSECs. When transplanted into the liver of adult mice, angioblasts efficiently gave rise to mature LSECs with robust factor VIII (FVIII) production. Humanization of the murine liver with hPSC-derived LSECs provides a tractable system for studying the biology of this key liver cell type.


Endothelial Cells , Pluripotent Stem Cells , Animals , Hepatocytes , Humans , Liver , Mice , Transforming Growth Factor beta
5.
ACS Nano ; 14(4): 4698-4715, 2020 04 28.
Article En | MEDLINE | ID: mdl-32255624

There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.


Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Disease Models, Animal , Humans , Liver , Marmota , Tissue Distribution
6.
Nat Commun ; 9(1): 4383, 2018 10 22.
Article En | MEDLINE | ID: mdl-30348985

The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment.


Liver/cytology , Liver/metabolism , Macrophages/cytology , Macrophages/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Monocytes/cytology , Monocytes/metabolism , Sequence Analysis, RNA
7.
PLoS One ; 10(12): e0144100, 2015.
Article En | MEDLINE | ID: mdl-26633894

The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.


Cell Differentiation/genetics , Cell Lineage/physiology , Homeodomain Proteins/genetics , Islets of Langerhans/metabolism , Transcription Factors/genetics , Cell Line , Glucagon/genetics , Glucagon/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/cytology , Nuclear Proteins , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Pancreatic Polypeptide/genetics , Pancreatic Polypeptide/metabolism , Somatostatin/genetics , Somatostatin/metabolism , Transcription Factors/metabolism
8.
Anal Chem ; 87(21): 10762-9, 2015 Nov 03.
Article En | MEDLINE | ID: mdl-26438999

Continued advances toward cell-based therapies for human disease generate a growing need for unbiased and label-free monitoring of cellular characteristics. We used Raman microspectroscopy to characterize four important stages in the 26-day directed differentiation of human embryonic stem cells (hESCs) to insulin-positive cells. The extent to which the cells retained spectroscopic features of pluripotent cells or developed spectroscopic features suggestive of pancreatic endocrine cells, as well as assessing the homogeneity of the cell populations at these developmental stages, were of particular interest. Such information could have implications for the utility of Raman microspectroscopy process analysis for the generation of insulin-positive cells from hESCs. Because hESC seeding density influences the subsequent pancreatic development, three different seeding density cultures were analyzed. Transcription factor and other marker analyses assessed the progress of the cells through the relevant developmental stages. Increases in the Raman protein-to-nucleic acid band ratios were observed at the final endocrine stage analyzed, but this increase was less than expected. Also, high glycogen band intensities, somewhat unexpected in pancreatic endocrine cells, suggested the presence of a substantial number of glycogen containing cells. We discuss the potential process analytical technology application of these findings and their importance for cell manufacturing.


Cell Culture Techniques/instrumentation , Cell Differentiation , Insulin-Secreting Cells/cytology , Pancreas/cytology , Spectrum Analysis, Raman , Embryonic Stem Cells/cytology , Glycogen/analysis , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism
9.
Islets ; 6(2): e29236, 2014.
Article En | MEDLINE | ID: mdl-25483960

Human embryonic stem cells (hESCs) are pluripotent and capable of generating new ß-cells, but current in vitro differentiation protocols generally fail to produce mature, glucose-responsive, unihormonal ß-cells. Instead, these methods tend to produce immature polyhormonal endocrine cells which mature in vivo into glucagon-positive α-cells. PAX4 is an established transcription factor in ß-cell development and function, and is capable of converting glucagon-positive cells to insulin-positive cells in mice. Work in human and mouse ESCs has shown that constitutive PAX4 expression promotes the development of insulin-positive cells, but whether acute PAX4 expression is sufficient to guide specific endocrine cell fates has not been addressed in hESCs. In this study, we applied recombinant adenovirus to ectopically express human PAX4 in hESC-derived pancreatic progenitors, with the aim of influencing the endocrine developmental cascade away from polyhormonal cells toward unihormonal insulin-positive cells. Gene delivery to pancreatic progenitors was efficient and dose-dependent. By the end of in vitro differentiation, PAX4 reduced ARX expression, but only the high dose tested significantly reduced glucagon release. Single cell analysis revealed that while PAX4 did not alter the proportion of endocrine cells, it did reduce the number of glucagon-positive cells and increased the number of unihormonal insulin-positive cells. These data suggest that acute PAX4 overexpression can reduce expression of ARX and glucagon resulting in improved numbers of unihormonal insulin-positive cells.


Cell Differentiation , Embryonic Stem Cells/metabolism , Glucagon/metabolism , Homeodomain Proteins/metabolism , Insulin/metabolism , Paired Box Transcription Factors/metabolism , Transcription Factors/metabolism , Adenoviridae , C-Peptide/metabolism , Cells, Cultured , Gene Dosage , Gene Expression , Genetic Vectors , Glucagon/genetics , Homeodomain Proteins/genetics , Humans , Insulin/genetics , Insulin Secretion , Paired Box Transcription Factors/genetics , RNA/analysis , Recombination, Genetic , Transcription Factors/genetics , Up-Regulation
10.
PLoS One ; 8(12): e82076, 2013.
Article En | MEDLINE | ID: mdl-24324748

Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.


Cell Differentiation , Embryonic Stem Cells/cytology , Islets of Langerhans/cytology , Islets of Langerhans/embryology , Body Patterning , Cell Count , Cell Cycle , Endoderm/cytology , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Humans , Nuclear Proteins , Transcription Factors
11.
Biotechnol Bioeng ; 110(10): 2706-16, 2013 Oct.
Article En | MEDLINE | ID: mdl-23613129

Human embryonic stem cells (hESCs) can be differentiated into multiple cell types with great therapeutic potential. However, optimizing the often multi-week cultures to obtain sufficient differentiated cell yields has been in part limited by the high variability of even parallel hESC differentiation cultures. We describe the isolation and features of a subline of CA1 hESCs (CA1S) that display a very high 25% cloning efficiency while retaining many properties of the parental hESCs, including being karyotypically normal and their ability to generate teratomas containing all three germ layers. Although more detailed analysis revealed that CA1S cells have a 3.8 Mb genomic duplication on chromosome 20, they remain highly useful. In particular, CA1S cells are readily expanded at high yields in culture and possess greatly reduced well-to-well variation even when seeded at 100 cells/well. Thus, 10(8) CA1S cells can be generated within one week from 10(6) cells to seed 10(6) wells. We determined that CA1S cells have the capacity to follow established in vitro differentiation protocols to pancreatic progenitors and subsequent hormone-positive cell types and used CA1S cells to explore definitive endoderm induction in a high performance screen (Z-factor = 0.97). This system revealed that CA1S cells do not require WNT3A to efficiently form definitive endoderm, a finding that was confirmed with H1 hESCs, although H1 cells did show modest benefits of high WNT3A doses. Proliferative index measurements of CA1S cells were shown to rapidly reflect their differentiation status in a high throughput system. Though results obtained with CA1S cells will need to be confirmed using conventional hESC lines, these cells should ease the development of optimized hESC growth and differentiation protocols. In particular, they should limit the more arduous secondary screens using hESCs to a smaller number of variables and doses.


Cell Line , Embryonic Stem Cells , High-Throughput Screening Assays/methods , Analysis of Variance , Cell Differentiation , Cell Proliferation , Humans , Pancreas/cytology
12.
PLoS One ; 5(9): e12958, 2010 Sep 23.
Article En | MEDLINE | ID: mdl-20886041

Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.


Biological Factors/pharmacology , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , High-Throughput Screening Assays/methods , Homeodomain Proteins/genetics , Insulin/genetics , Invertebrates/chemistry , Trans-Activators/genetics , Animals , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical/instrumentation , High-Throughput Screening Assays/instrumentation , Homeodomain Proteins/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Trans-Activators/metabolism
13.
Differentiation ; 80(2-3): 130-9, 2010.
Article En | MEDLINE | ID: mdl-20561745

Islet transplantation represents a potential cure for type 1 diabetes; however, a lack of sufficient donor material limits its clinical use. To address the shortfall of islet availability, surrogate insulin-producing cells are sought. Studies suggest that human amniotic fluid (hAF) contains multipotent progenitor cells capable of differentiating to all three germ layers. Here, we used high-content, live-cell imaging to assess the ability to reprogram hAF cells towards a beta cell phenotype. A fluorescent reporter system was developed where DsRed express (DSRE) expression is driven by the human insulin promoter. Using integrative lentiviral technology, we created stable reporter hAF cells that could be routinely monitored for insulin promoter activation. These cells were subjected to combinatorial high-content screening using adenoviral-mediated expression of up to six transcription factors important for beta cell development. Cells were monitored for DSRE expression which revealed an optimal combination of the transcription factors required to induce insulin gene expression in hAF cells. These optimally induced cells were examined for expression of additional beta cell transcription factors and proteins involved in glucose sensing and insulin processing. RT-qPCR revealed very low level expression of insulin that was ultimately insufficient to reverse streptozotocin-induced diabetes following sub-capsular kidney transplantation. High-content, live-cell imaging using fluorescent reporter cells provides a convenient method for repeated assessment of cellular reprogramming. hAF cells could be reprogrammed to express key beta cell proteins, however insulin gene expression was insufficient to reverse hyperglycemia in diabetic animals.


Amniotic Fluid/cytology , Insulin/metabolism , Adenoviridae/genetics , Animals , Cells, Cultured , Flow Cytometry , Genes, Reporter , Humans , Immunohistochemistry , Insulin/genetics , Islets of Langerhans/metabolism , Male , Mice , Promoter Regions, Genetic , Rats , Transcription Factors/metabolism
...