Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Brain Sci ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38928553

RESUMEN

Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.

3.
Sci Rep ; 13(1): 21907, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081991

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.


Asunto(s)
Fluorocarburos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Neuronas Dopaminérgicas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Aprendizaje Automático , Fluorocarburos/farmacología
4.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834465

RESUMEN

The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Células Madre Mesenquimatosas , Recién Nacido , Embarazo , Humanos , Femenino , Placenta/metabolismo , Epigénesis Genética , Líquido Amniótico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo , Disruptores Endocrinos/farmacología , Evaluación de Resultado en la Atención de Salud , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo
5.
Environ Res ; 235: 116487, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419196

RESUMEN

Bisphenols and Perfluoroalkyls are chemical compounds widely used in industry known to be endocrine disruptors (EDs). Once ingested through contaminated aliments, they mimic the activity of endogenous hormones leading to a broad spectrum of diseases. Due to the extensive use of plastic in human life, particular attention should be paid to antenatal exposure to Bisphenols and Perfluoroalkyls since they cross the placental barrier and accumulates in developing embryo. Here we investigated the effects of Bisphenol-A (BPA), Bisphenol-S (BPS), perfluorooctane-sulfonate (PFOS) and perfluorooctanoic-acid (PFOA), alone or combined, on human-induced pluripotent stem cells (hiPSCs) that share several biological features with the stem cells of blastocysts. Our data show that these EDs affect hiPSC inducing a great mitotoxicity and dramatic changes in genes involved in the maintenance of pluripotency, germline specification, and epigenetic regulation. We also evidenced that these chemicals, when combined, may have additive, synergistic but also negative effects. All these data suggest that antenatal exposure to these EDs may affect the integrity of stem cells in the developing embryos, interfering with critical stages of early human development that might be determinant for fertility. The observation that the effects of exposure to a combination of these chemicals are not easily foreseeable further highlights the need for wider awareness of the complexity of the EDs effects on human health and of the social and economic burden attributable to these compounds.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Infertilidad , Humanos , Femenino , Embarazo , Epigénesis Genética , Placenta , Fertilidad , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Fluorocarburos/toxicidad , Disruptores Endocrinos/toxicidad
6.
BMC Oral Health ; 23(1): 425, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370064

RESUMEN

BACKGROUND: Dental implant is the principal treatment for edentulism and the healthiness of the peri-implant tissue has a pivotal role for its longterm success. In addition, it has been shown that also the topography of the healing abutment can influence the outcome of the restoration. The objective of this human clinical trial was to assess the impact of a novel laser-treated healing abutment on peri-implant connective tissue and extracellular matrix proteins compared to the conventional machined surface, which served as the control group. METHODS: During second surgical stage a customized healing abutment were inserted on 30 single dental implants. Healing abutments were realized with two alternated different surface (two side laser-treated surfaces and two side machined surfaces) in order to be considered both as test and control on the same implant and reduce positioning bias. Following the soft tissue healing period (30 ± 7 days) a 5 mm circular biopsy was retrieved. Immuno-histochemical and quantitative real-time PCR (qPCR) analyses were performed on Collagen, Tenascin C, Fibrillin I, Metalloproteinases (MMPs) and their inhibitor (TIMPs). 15 were processed for qPCR, while the other 15 were processed for immunohistochemical analysis. Paired t-test between the two groups were performed. A value of p < 0.05 was considered statistically significant. RESULTS: Results revealed that the connective tissue facing the laser-treated surface expressed statistically significant lower amount of MMPs (p < 0.05) and higher level of TIMPs 3 (p < 0.05), compared to the tissue surrounding the machined implant, which, in turn expressed also altered level of extracellular matrix protein (Tenascin C, Fibrillin I (p < 0.05)) and Collagen V, that are known to be altered also in peri-implantitis. CONCLUSIONS: In conclusion, the laser-treated surface holds promise in positively influencing wound healing of peri-implant connective tissue. Results demonstrated that topographic nature of the healing abutments can positively influence mucosal wound healing and molecular expression. Previous studies have been demonstrated how laser treatment can rightly influence integrity and functionality of the gingiva epithelium and cell adhesion. Regarding connective tissue different molecular expression demonstrated a different inflammatory pattern between laser treated or machined surfaces where laser treated showed better response. Targeted interventions and preventive measures on peri- implant topography could effectively minimize the risk of peri-implant diseases contributing to the long-term success and durability of restoration. However, new studies are mandatory to better understand this phenomenon and the role of this surface in the peri-implantitis process.  TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov Identifier: (Registration Number: NCT05754970 ). Registered 06/03/2023, retrospectively registered.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Implantes Dentales/efectos adversos , Tenascina , Colágeno , Tejido Conectivo , Rayos Láser , Fibrilinas , Metaloproteinasas de la Matriz , Titanio
7.
J Histochem Cytochem ; 71(4): 199-209, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37013268

RESUMEN

Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.


Asunto(s)
Betaína , Atrofia Muscular , Factor de Necrosis Tumoral alfa , Humanos , Betaína/farmacología , Línea Celular , Citocinas , Inflamación/patología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Factor de Necrosis Tumoral alfa/metabolismo
8.
Nat Commun ; 14(1): 99, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609400

RESUMEN

DNA methylation is a fundamental epigenetic modification regulating gene expression. Aberrant DNA methylation is the most common molecular lesion in cancer cells. However, medical intervention has been limited to the use of broadly acting, small molecule-based demethylating drugs with significant side-effects and toxicities. To allow for targeted DNA demethylation, we integrated two nucleic acid-based approaches: DNMT1 interacting RNA (DiR) and RNA aptamer strategy. By combining the RNA inherent capabilities of inhibiting DNMT1 with an aptamer platform, we generated a first-in-class DNMT1-targeted approach - aptaDiR. Molecular modelling of RNA-DNMT1 complexes coupled with biochemical and cellular assays enabled the identification and characterization of aptaDiR. This RNA bio-drug is able to block DNA methylation, impair cancer cell viability and inhibit tumour growth in vivo. Collectively, we present an innovative RNA-based approach to modulate DNMT1 activity in cancer or diseases characterized by aberrant DNA methylation and suggest the first alternative strategy to overcome the limitations of currently approved non-specific hypomethylating protocols, which will greatly improve clinical intervention on DNA methylation.


Asunto(s)
Metilación de ADN , ARN , ARN/genética , ARN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética
9.
iScience ; 25(10): 105197, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36238899

RESUMEN

Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening.

10.
Biomolecules ; 12(10)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291705

RESUMEN

High-sensitivity cardiac troponin assays have become the gold standard for diagnosing acute and chronic myocardial injury. The detection of troponin levels beyond the 99th percentile is included in the fourth universal definition of myocardial infarction, specifically recommending the use of sex-specific thresholds. Measurable concentrations below the proposed diagnostic thresholds have been shown to inform prognosis in different categories of inpatients and outpatients. However, clinical investigations from the last twenty years have yielded conflicting results regarding the incremental value of using different cut-offs for men and women. While advocates of a sex-specific approach claim it may help reduce gender bias in cardiovascular medicine, particularly in acute coronary syndromes, other groups question the alleged incremental diagnostic and prognostic value of sex-specific thresholds, ultimately asserting that less is more. In the present review, we aimed to synthesize our current understanding of sex-based differences in cardiac troponin levels and to reappraise the available evidence with regard to (i) the prognostic significance of sex-specific diagnostic thresholds of high-sensitivity cardiac troponin assays compared to common cut-offs in both men and women undergoing cardiovascular disease risk assessment, and (ii) the clinical utility of high-sensitivity cardiac troponin assays for cardiovascular disease prevention in women.


Asunto(s)
Síndrome Coronario Agudo , Sexismo , Humanos , Femenino , Masculino , Pronóstico , Biomarcadores , Troponina
11.
Front Cell Dev Biol ; 10: 936990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938174

RESUMEN

Human amniotic fluids stem cells (hAFSCs) can be easily isolated from the amniotic fluid during routinely scheduled amniocentesis. Unlike hiPSCs or hESC, they are neither tumorigenic nor immunogenic and their use does not rise ethical or safety issues: for these reasons they may represent a good candidate for the regenerative medicine. hAFSCs are generally considered multipotent and committed towards the mesodermal lineages; however, they express many pluripotent markers and share some epigenetic features with hiPSCs. Hence, we hypothesized that hAFSCs may overcome their mesodermal commitment differentiating into to ectodermal lineages. Here we demonstrated that by the sequential exposure to specific factors, hAFSCs can give rise to spinal motor neurons (MNs), as evidenced by the gradual gene and protein upregulation of early and late MN markers (PAX6, ISL1, HB9, NF-L, vAChT). When co-cultured with myotubes, hAFSCs-derived MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle contractions. These data demonstrated the hAFSCs are not restricted to mesodermal commitment and can generate functional MNs thus outlining an ethically acceptable strategy for the study and treatment of the neurodegenerative diseases.

12.
Front Cardiovasc Med ; 9: 893374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656402

RESUMEN

Heart rate variability (HRV) is a reliable tool for the evaluation of several physiological factors modulating the heart rate (HR). Importantly, variations of HRV parameters may be indicative of cardiac diseases and altered psychophysiological conditions. Recently, several studies focused on procedures for contactless HR measurements from facial videos. However, the performances of these methods decrease when illumination is poor. Infrared thermography (IRT) could be useful to overcome this limitation. In fact, IRT can measure the infrared radiations emitted by the skin, working properly even in no visible light illumination conditions. This study investigated the capability of facial IRT to estimate HRV parameters through a face tracking algorithm and a cross-validated machine learning approach, employing photoplethysmography (PPG) as the gold standard for the HR evaluation. The results demonstrated a good capability of facial IRT in estimating HRV parameters. Particularly, strong correlations between the estimated and measured HR (r = 0.7), RR intervals (r = 0.67), TINN (r = 0.71), and pNN50 (%) (r = 0.70) were found, whereas moderate correlations for RMSSD (r = 0.58), SDNN (r = 0.44), and LF/HF (r = 0.48) were discovered. The proposed procedure allows for a contactless estimation of the HRV that could be beneficial for evaluating both cardiac and general health status in subjects or conditions where contact probe sensors cannot be used.

13.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34943018

RESUMEN

Nutraceuticals and functional foods are the main sources of antioxidants and have positive effects on health through regulation of the redox balance. Accordingly, they represent a useful nutritional source for the prevention of noncommunicable diseases (NCDs). Menopausal women have an increased risk of developing NCDs due to hormonal dysregulation and the ongoing aging process. Accordingly, a healthy lifestyle and good nutritional habits are of utmost importance in this population. Resveratrol (RSV) is a natural polyphenol, and it is used as a nutraceutical given its estrogenic, anti-inflammatory, and antioxidant properties. The aim of this study was to analyze the effects of RSV on the lymphocyte cytotoxicity in menopausal women. Lymphocytes from 13 healthy menopausal women (56.18 ± 4.24 years) were isolated, and then cocultured with hTERT-HME1, a breast cell line with a precancerous phenotype. The results showed that, when treated with RSV, lymphocytes significantly increased the TNF-α production (p < 0.001), the formation of immune synapses (p = 0.009), and the target cell lysis (p = 0.002). No effects were detected in the lymphocyte total antioxidant capacity. In conclusion, RSV might enhance the immune surveillance in menopausal women by increasing the cytotoxic activity of lymphocytes.

14.
Artículo en Inglés | MEDLINE | ID: mdl-34948582

RESUMEN

Team handball is a highly dynamic sport where physical demands differ between categories and roles. Thus, physical characteristics are fundamental for the final performance. This study aims to (a) characterize a sample of young male and female elite team handball players with a non-athletic reference population; (b) to generate their 50%, 75%, and 95% percentiles of the bioelectrical variables. The study included 55 young elite team handball players (Males, n = 37, age = 17.0 ± 1.2 yrs, height = 185.8 ± 7.3 cm, weight = 82.0 ± 11.0 kg, body mass index (BMI) = 23.7 ± 2.5; Females, n = 18, age = 17.8 ± 0.9 yrs, height = 171.2 ± 6.4 cm, weight = 67.4 ± 7.2 kg, BMI = 23.0 ± 2.0). Height and bioelectrical variables were assessed in a state of euhydration and standard conditions. Bioelectrical impedance vector analysis (BIVA) was used to characterize the bioelectrical vector (BIA vector) distribution pattern for each group. Compared to the reference values, BIA vector showed statistically significant differences in males U17 (n = 19, T2 = 51.0, p < 0.0001), males U19 (n = 18, T2 = 82.0, p < 0.0001) and females U19 (n = 18, T2 = 85.8, p < 0.0001). Male groups were also bioelectrically different (T2 = 13.7, p = 0.0036). BIVA showed specific bioelectrical characteristics in young male and female elite handball players. This study provides an original data set of bioelectrical impedance reference values of young male and female elite team handball players. Our result might help to interpret individual bioimpedance vectors and define target regions for young handball players.


Asunto(s)
Deportes , Adolescente , Composición Corporal , Estatura , Índice de Masa Corporal , Impedancia Eléctrica , Femenino , Humanos , Masculino , Valores de Referencia
15.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831209

RESUMEN

Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.


Asunto(s)
Diferenciación Celular , Metilación de ADN/genética , NAD/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Desmetilación del ADN/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
16.
Biosensors (Basel) ; 11(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34821666

RESUMEN

Levetiracetam (LEV) is a broad-spectrum and widely used antiepileptic drug that also has neuroprotective effects in different neurological conditions. Given its complex interaction with neuronal physiology, a better comprehension of LEV effects on neurons activity is needed. Microelectrode arrays (MEAs) represent an advanced technology for the non-invasive study of electrophysiological activity of neuronal cell cultures. In this study, we exploited the Maestro Edge MEA system, a platform that allows a deep analysis of the electrical network behavior, to study the electrophysiological effect of LEV on a mixed population of human neurons (glutamatergic, GABAergic and dopaminergic neurons, and astrocytes). We found that LEV significantly affected different variables such as spiking, single-electrode bursting, and network bursting activity, with a pronounced effect after 15 min. Moreover, neuronal cell culture completely rescued its baseline activity after 24 h without LEV. In summary, MEA technology confirmed its high sensitivity in detecting drug-induced electrophysiological modifications. Moreover, our results allow one to extend the knowledge on the electrophysiological effects of LEV on the complex neuronal population that resembles the human cortex.


Asunto(s)
Células Madre Pluripotentes Inducidas , Levetiracetam , Microelectrodos , Neuronas , Técnicas de Cultivo de Célula , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Levetiracetam/farmacología , Neuronas/efectos de los fármacos
17.
Artículo en Inglés | MEDLINE | ID: mdl-34682594

RESUMEN

Measuring exercise variables is one of the most important points to consider to maximize physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve both cardiovascular and neuromuscular performance. The 30-15IFT is a field test reflecting the effort elicited by HIIT, and the final velocity reached in the test is used to set the intensity of HIIT during the training session. In order to have a valid measure of the velocity during training, devices such as GPS can be used. However, in several situations (e.g., indoor setting), such devices do not provide reliable measures. The aim of the study was to predict exact running velocity during the 30-15IFT using accelerometry-derived metrics (i.e., Player Load and Average Net Force) and heart rate (HR) through a machine learning (ML) approach (i.e., Support Vector Machine) with a leave-one-subject-out cross-validation. The SVM approach showed the highest performance to predict running velocity (r = 0.91) when compared to univariate approaches using PL (r = 0.62), AvNetForce (r = 0.73) and HR only (r = 0.87). In conclusion, the presented multivariate ML approach is able to predict running velocity better than univariate ones, and the model is generalizable across subjects.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Carrera , Acelerometría , Benchmarking , Ejercicio Físico , Prueba de Esfuerzo , Frecuencia Cardíaca , Humanos , Aprendizaje Automático
18.
Biomedicines ; 9(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209807

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disease characterized by a specific and progressive loss of dopaminergic (DA) neurons and dopamine, causing motor dysfunctions and impaired movements. Unfortunately, available therapies can partially treat the motor symptoms, but they have no effect on non-motor features. In addition, the therapeutic effect reduces gradually, and the prolonged use of drugs leads to a significative increase in the number of adverse events. For these reasons, an alternative approach that allows the replacement or the improved survival of DA neurons is very appealing for the treatment of PD patients and recently the first human clinical trials for DA neurons replacement have been set up. Here, we review the role of chemical and biological molecules that are involved in the development, survival and differentiation of DA neurons. In particular, we review the chemical small molecules used to differentiate different type of stem cells into DA neurons with high efficiency; the role of microRNAs and long non-coding RNAs both in DA neurons development/survival as far as in the pathogenesis of PD; and, finally, we dissect the potential role of exosomes carrying biological molecules as treatment of PD.

19.
Artículo en Inglés | MEDLINE | ID: mdl-33171648

RESUMEN

The anthropometric profile assessment is an important aspect to consider during the growth stages of youth sport practitioners due to its usefulness in controlling maturity status and overall health. We performed an anthropometric profile evaluation in a sample of youth goalkeepers (n = 42) during a training camp, dividing them into three categories based on their years from peak height velocity (YPHV). We also checked if the selection of goalkeepers was associated with the birth quartile. The results showed that most of the participants' anthropometric parameters followed the normal trend according to the maturation stages. However, several subjects showed an overweight/obese condition and/or high waist circumference. Non-optimal values were found, mostly in the group of goalkeepers around the PHV. In addition, no selection based on birth quartile was seen. Therefore, the anthropometric profile and body composition of youth goalkeepers are physiologically affected by maturity status. However, several subjects were found to be overweight/obese and at cardiometabolic risk, suggesting that children and adolescents, although practicing sport, should pay attention to potentially contributing factors such as the attainment of the recommended levels of physical activity, lowering sedentary time, and adopt a healthy lifestyle.


Asunto(s)
Atletas , Composición Corporal , Estatura , Maduración Sexual , Adolescente , Antropometría , Índice de Masa Corporal , Niño , Humanos , Obesidad , Circunferencia de la Cintura
20.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878275

RESUMEN

Cell therapy with a variety of stem populations is increasingly being investigated as a promising regenerative strategy for cardiovascular (CV) diseases. Their combination with adequate scaffolds represents an improved therapeutic approach. Recently, several biomaterials were investigated as scaffolds for CV tissue repair, with decellularized extracellular matrices (dECMs) arousing increasing interest for cardiac tissue engineering applications. The aim of this study was to analyze whether dECMs support the cardiac differentiation of CardiopoieticAF stem cells. These perinatal stem cells, which can be easily isolated without ethical or safety limitations, display a high cardiac differentiative potential. Differentiation was previously achieved by culturing them on Matrigel, but this 3D scaffold is not transplantable. The identification of a new transplantable scaffold able to support CardiopoieticAF stem cell cardiac differentiation is pivotal prior to encouraging translation of in vitro studies in animal model preclinical investigations. Our data demonstrated that decellularized extracellular matrices already used in cardiac surgery (the porcine CorTMPATCH and the equine MatrixPatchTM) can efficiently support the proliferation and cardiac differentiation of CardiopoieticAF stem cells and represent a useful cellular scaffold to be transplanted with stem cells in animal hosts.


Asunto(s)
Líquido Amniótico/citología , Diferenciación Celular , Matriz Extracelular/química , Miocitos Cardíacos/citología , Células Madre/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Líquido Amniótico/metabolismo , Animales , Adhesión Celular , Proliferación Celular , Colágeno , Combinación de Medicamentos , Matriz Extracelular/metabolismo , Femenino , Caballos , Humanos , Laminina , Masculino , Miocitos Cardíacos/metabolismo , Proteoglicanos , Células Madre/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...