Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 405: 110372, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37672942

RESUMEN

The potential of using commercial peroxyacetic acid (PAA) for Vibrio parahaemolyticus sanitization was evaluated. Commercial PAA of 0.005 % (v/v, PAA: 2.24 mg/L, hydrogen peroxide: 11.79 mg/L) resulted in a planktonic cell reduction of >7.00 log10 CFU/mL when initial V. parahaemolyticus cells averaged 7.64 log10 CFU/mL. For cells on stainless steel coupons, treatment of 0.02 % PAA (v/v, PAA: 8.96 mg/L, hydrogen peroxide: 47.16 mg/L) achieved >5.00 log10 CFU/cm2 reductions in biofilm cells for eight strains but not for the two strongest biofilm formers. PAA of 0.05 % (v/v, PAA: 22.39 mg/L, hydrogen peroxide: 117.91 mg/L) was required to inactivate >5.00 log10 CFU/cm2 biofilm cells from mussel shell surfaces. The detection of PAA residues after biofilm treatment demonstrated that higher biofilm production resulted in higher PAA residues (p < 0.05), suggesting biofilm is acting as a barrier interfering with PAA diffusing into the matrices. Based on the comparative analysis of genomes, robust biofilm formation and metabolic heterogeneity within niches might have contributed to the variations in PAA resistance of V. parahaemolyticus biofilms.


Asunto(s)
Perna , Vibrio parahaemolyticus , Animales , Peróxido de Hidrógeno/farmacología , Ácido Peracético/farmacología , Acero Inoxidable , Biopelículas , Plancton
2.
Artículo en Inglés | MEDLINE | ID: mdl-37170869

RESUMEN

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Asunto(s)
Ácidos Grasos , Rumen , Animales , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Bacterias Gramnegativas , Hidrógeno
3.
Food Res Int ; 166: 112605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914349

RESUMEN

Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Biopelículas , Genómica , Operón , Celulosa
4.
Int J Food Microbiol ; 385: 110011, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36370527

RESUMEN

Vibrio parahaemolyticus is a marine oriented pathogen; and biofilm formation enables its survival and persistence on seafood processing plant, complicating the hygienic practice. The objectives of this study are to assess the ability of V. parahaemolyticus isolated from seafood related environments to form biofilms, to determine the effective sodium hypochlorite concentrations required to inactivate planktonic and biofilm cells, and to evaluate the genetic diversity required for strong biofilm formation. Among nine isolates, PFR30J09 and PFR34B02 isolates were identified as strong biofilm forming strains, with biofilm cell counts of 7.20, 7.08 log10 CFU/cm2, respectively, on stainless steel coupons after incubation at 25 °C. Free available chlorine of 1176 mg/L and 4704 mg/L was required to eliminate biofilm cells of 1.74-2.28 log10 CFU/cm2 and > 7 log10 CFU/cm2, respectively, whereas 63 mg/L for planktonic cells, indicating the ineffectiveness of sodium hypochlorite in eliminating V. parahaemolyticus biofilm cells at recommended concentration in the food industry. These strong biofilm-forming isolates produced more polysaccharides and were less susceptible to sodium hypochlorite, implying a possible correlation between polysaccharide production and sodium hypochlorite susceptibility. Genetic diversity in mshA, mshC and mshD contributed to the observed variation in biofilm formation between isolates. This study identified strong biofilm-forming V. parahaemolyticus strains of new multilocus sequence typing (MLST) types, showed a relationship between polysaccharide production and sodium hypochlorite resistance.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Hipoclorito de Sodio/farmacología , Tipificación de Secuencias Multilocus , Biopelículas , Variación Genética
5.
Biofouling ; 37(6): 680-688, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34369215

RESUMEN

The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.


Asunto(s)
Vibrio parahaemolyticus , Bacterias , Biopelículas , Simulación por Computador
6.
Microbiol Resour Announc ; 10(26): e0031021, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197202

RESUMEN

Members of the Clostridiales R-7 group are abundant bacterial residents of the rumen microbiome; however, they are poorly characterized. We report the complete genome sequences of three members of the R-7 group, FE2010, FE2011, and XBB3002, isolated from the ruminal contents of pasture-grazed dairy cows in New Zealand.

7.
Methods Mol Biol ; 1701: 519-534, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29116525

RESUMEN

Metasecretome is a collection of cell-surface and secreted proteins that mediate interactions between microbial communities and their environment. These include adhesins, enzymes, surface structures such as pili or flagella, vaccine targets or proteins responsible for immune evasion. Traditional approaches to exploring matasecretome of complex microbial communities via cultivation of microorganisms and screening of individual strains fail to sample extraordinary diversity in these communities, since only a limited fraction of microorganisms are represented by cultures. Advances in culture-independent sequence analysis methods, collectively referred to as metagenomics, offer an alternative approach that enables the direct analysis of collective microbial genomes (metagenome) recovered from environmental samples. This protocol describes a method, metasecretome phage display, which selectively displays the metasecretome portion of the metagenome. The metasecretome library can then be used for two purposes: (1) to sequence the entire metasecretome (using PacBio technology); (2) to identify metasecretome proteins that have a specific function of interest by affinity-screening (bio-panning) using a variety of methods described in other chapters of this volume.


Asunto(s)
Clonación Molecular/métodos , Biblioteca de Genes , Metagenoma , Metagenómica/métodos , Biblioteca de Péptidos
8.
Front Microbiol ; 7: 927, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379057

RESUMEN

[This corrects the article on p. 429 in vol. 7, PMID: 27092113.].

9.
Front Microbiol ; 7: 429, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092113

RESUMEN

Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to "bait" of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.

10.
Environ Microbiol ; 18(9): 3010-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26643468

RESUMEN

Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Arqueales/metabolismo , Cilióforos/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Methanobrevibacter/metabolismo , Rumen/microbiología , Adhesinas Bacterianas/genética , Animales , Proteínas Arqueales/genética , Bovinos , Cilióforos/fisiología , Methanobrevibacter/clasificación , Methanobrevibacter/genética , Methanobrevibacter/aislamiento & purificación , Rumen/parasitología
11.
Mol Ecol Resour ; 15(3): 464-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25159704

RESUMEN

Complex microbial communities typically contain a large number of low abundance species, which collectively, comprise a considerable proportion of the community. This 'rare biosphere' has been speculated to contain keystone species and act as a repository of genomic diversity to facilitate community adaptation. Many environmental microbes are currently resistant to cultivation, and can only be accessed via culture-independent approaches. To enhance our understanding of the role of the rare biosphere, we aimed to improve their metagenomic representation using DNA normalization methods, and assess normalization success via shotgun DNA sequencing. A synthetic metagenome was constructed from the genomic DNA of five bacterial species, pooled in a defined ratio spanning three orders of magnitude. The synthetic metagenome was fractionated and thermally renatured, allowing the most abundant sequences to hybridize. Double-stranded DNA was removed either by hydroxyapatite chromatography, or by a duplex-specific nuclease (DSN). The chromatographic method failed to enrich for the genomes present in low starting abundance, whereas the DSN method resulted in all genomes reaching near equimolar abundance. The representation of the rarest member was increased by approximately 450-fold. De novo assembly of the normalized metagenome enabled up to 18.0% of genes from the rarest organism to be assembled, in contrast to the un-normalized sample, where genes were not able to be assembled at the same sequencing depth. This study has demonstrated that the application of normalization methods to metagenomic samples is a powerful tool to enrich for sequences from rare taxa, which will shed further light on their ecological niches.


Asunto(s)
Biodiversidad , Variación Genética , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/normas , Metagenómica/métodos , Metagenómica/normas , Consorcios Microbianos , Sensibilidad y Especificidad
12.
Genome Res ; 24(9): 1517-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24907284

RESUMEN

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Asunto(s)
Proteínas Arqueales/genética , Metagenoma , Metano/biosíntesis , Microbiota , Rumen/microbiología , Ovinos/microbiología , Animales , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Fenotipo , Carácter Cuantitativo Heredable , Rumen/metabolismo , Ovinos/metabolismo , Transcriptoma
13.
BMC Genomics ; 15: 356, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24886150

RESUMEN

BACKGROUND: In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. RESULTS: By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. CONCLUSIONS: As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.


Asunto(s)
Bacteriófagos/metabolismo , Técnicas de Visualización de Superficie Celular , Metagenoma/genética , Metagenómica/métodos , Rumen/microbiología , Animales , Bovinos , Celulosomas/metabolismo , Bases de Datos de Proteínas , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN
14.
Microbiologyopen ; 2(1): 1-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23233310

RESUMEN

Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-"docking" protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas de Visualización de Superficie Celular , Lacticaseibacillus rhamnosus/metabolismo , Proteínas de la Membrana/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Biblioteca de Genes , Lacticaseibacillus rhamnosus/genética , Proteínas de la Membrana/genética , Unión Proteica , Mapeo de Interacción de Proteínas
15.
J Mol Biol ; 411(5): 972-85, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21763316

RESUMEN

The filamentous phage Ff (f1, fd, or M13) of Escherichia coli is assembled at the cell membranes by a process that is morphologically similar to that of pilus assembly. The release of the filament virion is mediated by excision from the membrane; conversely, entry into a host cell is mediated by insertion of the virion coat proteins into the membrane. The N-terminal domains of the minor virion protein pIII have the sole role of binding to host receptors during infection. In contrast, the C domain of pIII is required for two opposite functions: insertion of the virion into the membrane during infection and excision at the termination step of assembly/secretion. We identified a 28-residue-long segment in the pIII C domain, which is required for phage entry but dispensable for release from the membrane at the end of assembly. This segment, which we named the infection-competence segment (ICS), works only in cis with the N-terminal receptor-binding domains and does not require the equivalent ICS sequences in other subunits within the virion cap. The ICS contains a predicted amphipathic α-helix and is rich in small amino acids, Gly, Ala, and Ser, which are arranged as a [small]XXX[small]XX[small]XXX[small]XXX[small] motif. Scanning Ala/Gly mutagenesis of ICS showed that small residues are compatible with infection. Overall, organization of the C domain is reminiscent of α-helical pore-forming toxins' membrane insertion domains. The unique ability of pIII to mediate both membrane insertion and excision allowed us to compare these two fundamental membrane transactions and to show that receptor-triggered insertion is a more complex process than excision from membranes.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Inovirus/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Virales de Fusión/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Escherichia coli/virología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Mutación/genética , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Virales de Fusión/genética
16.
Curr Issues Mol Biol ; 13(2): 51-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21502666

RESUMEN

Filamentous bacteriophage, long and thin filaments that are secreted from the host cells without killing them, have been an antithesis to the standard view of head-and-tail bacterial killing machines. Episomally replicating filamentous phage Ff of Escherichia coli provide the majority of information about the principles and mechanisms of filamentous phage infection, episomal replication and assembly. Chromosomally- integrated "temperate" filamentous phage have complex replication and integration, which are currently under active investigation. The latter are directly or indirectly implicated in diseases caused by bacterial pathogens Vibrio cholerae, Pseudomonas aeruginosa and Neisseria meningitidis. In the first half of the review, both the Ff and temperate phage are described and compared. A large section of the review is devoted to an overview of phage display technology and its applications in nanotechnology.


Asunto(s)
Inovirus/fisiología , Nanotecnología/métodos , Biblioteca de Péptidos , Interacciones Huésped-Patógeno , Inovirus/ultraestructura , Virión/ultraestructura
17.
Mol Microbiol ; 76(1): 133-50, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20149106

RESUMEN

Secretins are a family of large bacterial outer membrane channels that serve as exit ports for folded proteins, filamentous phage and surface structures. Despite the large size of their substrates, secretins do not compromise the barrier function of the outer membrane, implying a gating mechanism. The region in the primary structure that forms the putative gate has not previously been determined for any secretin. To identify residues involved in gating the pIV secretin of filamentous bacteriophage f1, we used random mutagenesis of the gene followed by positive selection for mutants with compromised barrier function ('leaky' mutants). We identified mutations in 34 residues, 30 of which were clustered into two regions located in the centre of the conserved C-terminal secretin family domain: GATE1 (that spanned 39 residues) and GATE2 (that spanned 14 residues). An internal deletion constructed in the GATE2 region resulted in a severely leaky phenotype. Three of the four remaining mutations are located in the region that encodes the N-terminal, periplasmic portion of pIV and could be involved in triggering gate opening. Two missense mutations in the 24-residue region that separates GATE1 and GATE2 were also constructed. These mutant proteins were unstable, defective in multimerization and non-functional.


Asunto(s)
Inovirus/enzimología , Inovirus/genética , Secretina/genética , Secretina/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Escherichia coli K12/virología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Estructura Terciaria de Proteína , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...