Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(22): 28829-28837, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775136

RESUMEN

The phenomenon of dielectric switching has garnered considerable attention due to its potential applications in electronic and photonic devices. Typically, hybrid organic-inorganic perovskites, HOIPs, exhibit a binary (low-high) dielectric state transition, which, while useful, represents only the tip of the iceberg in terms of functional relevance. One way to boost the versatility of applications is the discovery of materials capable of nonbinary switching schemes, such as three-state dielectric switching. The ideal candidate for that task would exhibit a trio of attributes: two reversible, first-order phase transitions across three distinct crystal phases, minimal thermal hysteresis, and pronounced, step-like variations in dielectric permittivity, with a substantial change in its real part. Here, we demonstrate a one-dimensional lead halide perovskite with the formula (CH3)2C(H)NH3)PbI3, abbreviated as ISOPrPbI3, that fulfills these criteria and demonstrates three-state dielectric switching within a narrow temperature range of ca. 45 K. Studies on ISOPrPbI3 also revealed the polar nature of the low-temperature phase III below 266 K through pyrocurrent experiments, and the noncentrosymmetric character of the intermediate phase II and low-temperature phase III is confirmed via second harmonic generation measurements. Additionally, luminescence studies of ISOPrPbI3 have demonstrated combined broadband and narrow emission properties. The introduction of ISOPrPbI3 as a three-state dielectric switch not only addresses the limitations posed by the wide thermal gap between dielectric states in previous materials but also opens new avenues for the development of nonbinary dielectric switchable materials.

2.
Chem Rev ; 124(5): 2281-2326, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421808

RESUMEN

Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.

3.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257367

RESUMEN

We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.

4.
Chem Mater ; 35(22): 9725-9738, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38047186

RESUMEN

Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX3 perovskites (AZR = aziridinium; X = Cl, Br, I). Our work reveals that all perovskites undergo order-disorder phase transitions at low temperatures, which significantly affect the structural, dielectric, phonon, and nonlinear optical properties of these compounds. The desirable cubic phases of AZRPbX3 remain stable at lower temperatures (132, 145, and 162 K for I, Br, and Cl) compared to the methylammonium and formamidinium analogues. Similar to other 3D-connected hybrid perovskites, the dielectric response reveals a rather high dielectric permittivity, an important feature for defect tolerance. We further show that AZRPbBr3 and AZRPbI3 exhibit strong nonlinear optical absorption. The high two-photon brightness of AZRPbI3 emission stands out among lead perovskites emitting in the near-infrared region.

5.
Dalton Trans ; 52(34): 11981-11991, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578154

RESUMEN

We have synthesized and characterized two novel lead-free organic-inorganic hybrid crystals: (S(CH3)3)3[Bi2I9] (TBI) and (S(CH3)3)3[Sb2I9] (TSI). Thermal DSC, TG, and DTA analyses indicate structural phase transitions (PTs) in both compounds; TBI undergoes two structural phase transitions at 314.2/314.8 K (cooling/heating) and at 181.5 K of first (I ↔ II) and second order (II ↔ III), respectively. The crystal structures of TBI are refined for phases I (325 K), II (200 K) and III (100 K). TBI exhibits ferroelastic properties since both PTs are accompanied by a change in the symmetry of crystals: P63/mmc → C2/c (I → II) and C2/c → P1̄ (II → III). The presence of a ferroelastic domain structure has been confirmed by optical observations. In turn, TSI also reveals two PTs: I ↔ II (at 303.9/304.1 K) and II ↔ III (212.9/221.4 K). To compare and obtain insight into the mechanism of the PTs of TBI, we have carried out temperature dependent single crystal X-ray diffraction studies. Additionally, to confirm the change in the dynamical states of molecules in PTs, dielectric measurements have been carried out between 100 K and 400 K in the frequency range of 200 Hz to 2 MHz. Moreover, the measurements of the 1H NMR spin-lattice relaxation time, T1, and a second moment, M2, of the 1H NMR line have been undertaken in the temperature range between 100 and 300 K.

6.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175304

RESUMEN

Hybrid organic-inorganic iodides based on Bi(III) and Sb(III) provide integrated functionalities through the combination of high dielectric constants, semiconducting properties and ferroic phases. Here, we report a pyrrolidinium-based bismuth (1) and antimony (2) iodides of (NC4H10)3[M2I9] (M: Bi(III), Sb(III)) formula which are ferroelastic at room temperature. The narrow band gaps (~2.12 eV for 1 and 2.19 eV for 2) and DOS calculations indicate the semiconducting characteristics of both materials. The crystal structure consists of discrete, face-sharing bioctahedra [M2I9]3- and disordered pyrrolidinium amines providing charge balance and acting as spacers between inorganic moieties. At room temperature, 1 and 2 accommodate orthorhombic Cmcm symmetry. 1 displays a complex temperature-induced polymorphism. It is stable up to 525 K and undergoes a sequence of low-temperature phase transitions (PTs) at 221/222 K (I ↔ II) and 189/190 K (II ↔ III) and at 131 K (IV→III), associated with the ordering of pyrrolidinium cations and resulting in Cmcm symmetry breaking. 2 undergoes only one PT at T = 215 K. The dielectric studies disclose a relaxation process in the kilohertz frequency region, assigned to the dynamics of organic cations, described well by the Cole-Cole relation. A combination of single-crystal X-ray diffraction, synchrotron powder diffraction, spin-lattice relaxation time of 1H NMR, dielectric and calorimetric studies is used to determine the structural phase diagram, cation dynamics and electric properties of (NC4H10)3[M2I9].

7.
Inorg Chem ; 61(38): 15225-15238, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36102245

RESUMEN

Hybrid organic-inorganic lead halide perovskites have emerged as promising materials for various applications, including solar cells, light-emitting devices, dielectrics, and optical switches. In this work, we report the synthesis, crystal structures, and linear and nonlinear optical as well as dielectric properties of three imidazolium lead bromides, IMPbBr3, IM2PbBr4, and IM3PbBr5 (IM+ = imidazolium). We show that these compounds exhibit three distinct structure types. IMPbBr3 crystallizes in the 4H-hexagonal perovskite structure with face- and corner-shared PbBr6 octahedra (space group P63/mmc at 295 K), IM2PbBr4 adopts a one-dimensional (1D) double-chain structure with edge-shared octahedra (space group P1̅ at 295 K), while IM3PbBr5 crystallizes in the 1D single-chain structure with corner-shared PbBr6 octahedra (space group P1̅ at 295 K). All compounds exhibit two structural phase transitions, and the lowest temperature phases of IMPbBr3 and IM3PbBr5 are noncentrosymmetric (space groups Pna21 at 190 K and P1 at 100 K, respectively), as confirmed by measurements of second-harmonic generation (SHG) activity. X-ray diffraction and thermal and Raman studies demonstrate that the phase transitions feature an order-disorder mechanism. The only exception is the isostructural P1̅ to P1̅ phase transition at 141 K in IM2PbBr4, which is of a displacive type. Dielectric studies reveal that IMPbBr3 is a switchable dielectric material, whereas IM3PbBr5 is an improper ferroelectric. All compounds exhibit broadband, highly shifted Stokes emissions. Features of these emissions, i.e., band gap and excitonic absorption, are discussed in relation to the different structures of each composition.

8.
Inorg Chem ; 61(39): 15520-15531, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36130277

RESUMEN

Two-dimensional (2D) lead halide perovskites are a family of materials at the heart of solar cell, light-emitting diode, and photodetector technologies. This perspective leads to a number of synthetic efforts toward materials of this class, including those with prescribed polar architectures. The methylhydrazinium (MHy+) cation was recently presumed to have an unusual capacity to generate non-centrosymmetric perovskite phases, despite its intrinsically nonchiral structure. Here, we witness this effect once again in the case of the Ruddlesden-Popper perovskite phase of formula MHy2PbCl4. MHy2PbCl4 features three temperature-dependent crystal phases, with two first-order phase transitions at T1 = 338.2 K (331.8 K) and T2 = 224.0 K (205.2 K) observed in the heating (cooling) modes, respectively. Observed transitions involve a transformation from high-temperature orthorhombic phase I, with the centrosymmetric space group Pmmn, through the room-temperature modulated phase II, with the average structure being isostructural to I, to the low-temperature monoclinic phase III, with non-centrosymmetric space group P21. The intermediate phase II is a rare example of a modulated structure in 2D perovskites, with Pmmn(00γ)s00 superspace symmetry and modulation vector q ≅ 0.25c*. MHy2PbCl4 beats the previous record of MHy2PbBr4 in terms of the shortest inorganic interlayer distance in 2D perovskites (8.79 Šat 350 K vs 8.66 Šat 295 K, respectively). The characteristics of phase transitions are explored with differential scanning calorimetry, dielectric, and Raman spectroscopies. The non-centrosymmetry of phase III is confirmed with second harmonic generation (SHG) measurements, and polarity is demonstrated by the pyroelectric effect. MHy2PbCl4 also exhibits thermochromism, with the photoluminescence (PL) color changing from purplish-blue at 80 K to bluish-green at 230 K. The demonstration of polar characteristics for one more member of the methylhydrazinium perovskites settles a debate about whether this approach can present value for the crystal engineering of acentric solids similar to that which was recently adopted by a so-called fluorine substitution effect.

9.
Dalton Trans ; 51(23): 9094-9102, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35661846

RESUMEN

Hybrid organic-inorganic perovskites comprising hypophosphite ligands are emerging functional materials exhibiting magnetic, photoluminescence, negative thermal expansion and negative linear compressibility behaviours. This work reports five novel hypophosphite perovskites, [A]M(H2POO)3 (A = pyrrolidinium (PYR+), guanidinium (GUA+) and imidazolium (IM+); M = Cd2+ and Co2+). [GUA]Cd(H2POO)3, [IM]Cd(H2POO)3, [GUA]Co(H2POO)3 and [IM]Co(H2POO)3 belong to the centrosymmetric trigonal R3̄c, monoclinic P21/c, monoclinic I2/m, and orthorhombic Pbca space groups, respectively, while [PYR]Cd(H2POO)3 crystallizes in the noncentrosymmetric orthorhombic space group Aea2. The polar order of PYR+ cations was confirmed by observation of moderate second harmonic generation (SHG) activity. Magnetic studies reveal that [GUA]Co(H2POO)3 and [IM]Co(H2POO)3 are weak ferromagnets with the ordering temperatures higher compared to their manganese analogues. Upon ultraviolet excitation, the cadmium counterparts exhibit purplish-blue emissions at low temperatures, which decrease on heating. Analysis of the photoluminescence data reveals that the emission quenching decreases with decreasing distortion of the cadmium-hypophosphite framework. Discovery of the new hypophosphites exhibiting magnetic or polar order and photoluminescence properties shows that hypophosphite perovskites offer a promising platform for generating new functional materials, including those that are light emitting, ferroelectric and multiferroic.


Asunto(s)
Cadmio , Cobalto , Ligandos , Fenómenos Magnéticos , Imanes
10.
Talanta ; 245: 123460, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35430530

RESUMEN

A new solid-phase microextraction method for preconcentration and determination of ultra-trace Au(III) and AuNPs was developed. For this purpose, a nanosized aluminum-magnesium layered double hydroxide (AlMg-LDH)/graphene oxide (GO) nanocomposite was synthesized. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy confirmed the successful synthesis of the nanocomposite AlMg-LDH/GO with a well-crystallized hexagonal structure. The synthesized nanomaterial allows sorption with 100% recovery of AuNPs at pH 1-5 or AuNPs and Au(III) ions at pH 1-2. Therefore, gold ions and corresponding gold nanoparticles can be together or separately determined. The maximum sorption capacity of the nanocomposite is 12 mg g-1 for Au(III). After adsorption, gold was directly determined on the AlMg-LDH/GO by energy-dispersive X-ray fluorescence spectrometry with a detection limit of 0.06 ng mL-1, precision ca. 4%, and recovery >90%. According to the Green Chemistry rule, the method has significant advantages, such as reducing the amount of sorbent required and eliminating solvent. The elution of analytes from the nanosorbent is completely eliminated in the developed method. The developed method was successfully used to extract and determine ultra-trace gold in cosmetics products.


Asunto(s)
Cosméticos , Grafito , Nanopartículas del Metal , Nanocompuestos , Aluminio/química , Oro , Grafito/química , Magnesio/química , Nanocompuestos/química
11.
Dalton Trans ; 51(5): 1850-1860, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018903

RESUMEN

We have synthesised and characterised novel organic-inorganic hybrid crystals: (C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9 (PSI and PBI). The thermal DSC and TG analyses indicate four structural phase transitions (PTs) at 366.2/366.8, 274.6/275.4, 233.3/233.3 and 142.8/143.1 K (on cooling/heating) for PSI and two reversible PTs at 365.2/370.8 and 252.6/257.9 K for PBI. Both analogues crystallize at room temperature in the orthorhombic Cmcm structure, which transforms, in the case of PBI, to monoclinic P21/n at low temperature. According to the X-ray diffraction results, the anionic component is discrete and built of face-sharing bioctahedra, [M2I9]3-, in both compounds, whereas cations exhibit distinct dynamical disorder over high temperature phases. Dielectric spectroscopy and 1H NMR spectroscopy have been used to characterise the dynamical state of the C3N2H5+ cations. The ferroelastic domain structure has been characterised by observations under a polarized optical microscope. Both compounds are semiconductors with narrow bandgaps of 1.97 eV (PBI) and 2.10 eV (PSI).

12.
Dalton Trans ; 51(1): 352-360, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34897339

RESUMEN

Hypophosphite hybrid perovskites have recently received widespread attention due to their diverse structural and magnetic properties, negative thermal expansion and photoluminescence behaviour. Herein, we report two new three-dimensional hybrid perovskites containing unusually large organic cations, pyrrolidinium and 2-hydroxyethylammonium. We report the crystal structures of these new manganese-hypophosphite frameworks and their magnetic and optical properties. We also report the magnetic and optical properties of two previously discovered analogues, dimethylammonium and imidazolium manganese hypophosphites. Both new compounds crystallize in a monoclinic structure, space group P21/n, with ordered organic cations at room temperature. Magnetic studies show that all studied compounds are examples of canted antiferromagnets but the weak ferromagnetic contribution and the ordering temperature are significantly modulated by the type of organic cation located in the cavity of the framework. We discuss the origin of this behaviour. Upon ultraviolet excitation, all compounds exhibit broadband photoluminescence associated with the 4T1g(G) → 6A1g(S) transition of octahedrally coordinated Mn2+ ions. The position of the PL band depends on the type of organic cation, being the most blue-shifted for the imidazolium analogue (646 nm) and the most red-shifted for the pyrrolidinium counterpart (689 nm). The most interesting property of the studied hypophosphites is, however, the strong temperature dependence of the photoluminescence intensity, suggesting the possible application of these compounds in non-contact optical thermometry.

13.
Dalton Trans ; 50(48): 17906-17910, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34854860

RESUMEN

A combination of structural, dielectric and calorimetric studies is used to describe a highly atypical behaviour of novel hybrid formate [NH3(CH2)3NH2(CH2)3NH3][Mn(HCOO)3]3, incorporating large triprotonated molecular cations. Two successive phase transitions, switching between fast multiple rotor modes, and the surprising probable coexistence of static and dynamic disorder are discussed for this compound.

14.
Dalton Trans ; 50(30): 10580-10592, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34269363

RESUMEN

Coordination polymers with multiple non-centrosymmetric phases have sparked substantial research efforts in the materials community. We report the synthesis and properties of a hitherto unknown cadmium dicyanamide coordination polymer comprising benzyltrimethylammonium cations (BeTriMe+). The room-temperature (RT) crystal structure of [BeTriMe][Cd(N(CN)2)3] (BeTriMeCd) is composed of Cd centers linked together by triple dca-bridges to form one-dimensional chains with BeTriMe+ cations located in void spaces between the chains. The structure is polar, the space group is Cmc21, and the spontaneous polarization in the c-direction is induced by an arrangement of BeTriMe+ dipoles. BeTriMeCd undergoes a second-order phase transition (PT) at T1 = 268 K to a monoclinic polar phase P21. Much more drastic structural changes occur at the first-order PT observed in DSC at T2 = 391 K. Raman data prove that the PT at T2 leads to extensive rearrangement of the Cd-dca coordination sphere and pronounced disorder of both dca and BeTriMe+. On cooling, the HT polymorph transforms at T3 = 266 K to another phase of unknown symmetry. Temperature-resolved second harmonic generation (TR-SHG) studies at 800 nm confirm the structural non-centrosymmetry of all the phases detected. Optical studies indicate that BeTriMeCd exhibits at low temperatures an intense emission under 266 nm excitation. Strong temperature dependence of both one-photon excited luminescence and SHG response allowed for the demonstration of two disparate modes of optical thermometry for a single material. One is the classic ratiometric luminescence thermometry employing linear excitation in the ultraviolet region while the other is single-band SHG thermometry, a thus far unprecedented subtype of nonlinear optical thermometry. Thus, BeTriMeCd is a rare example of a dicyanamide framework exhibiting polar order, SHG activity, photoluminescence properties and linear and nonlinear optical temperature sensing capability.

15.
Dalton Trans ; 50(7): 2639-2647, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33524098

RESUMEN

The recently discovered hypophosphite perovskites are promising functional materials. This contribution is devoted to the structural, thermal, dielectric, Raman and optical studies of a new hybrid organic-inorganic perovskite, [FA]Cd(H2POO)3 (FA = formamidinium, NH2CHNH2+). We also report the thermal, magnetic, dielectric and optical properties of the known perovskite [FA]Mn(H2POO)3. [FA]Cd(H2POO)3 crystallizes in a monoclinic structure, with the space group C2/c, and transforms at 190 K to another monoclinic structure, with the space group P21/n. For both compounds, the FA+ is disordered through the two-fold axis in the high-temperature (HT) phases. However, lowering of the temperature of [FA]Mn(H2POO)3 results in the complete ordering of FA+, while the organic cations still occupy two positions in [FA]Cd(H2POO)3. Raman data provide strong evidence that both FA+ cations have the same or a very similar structure and that the phase transition is triggered by an ordering of the FA+ cations. The dielectric studies confirm the order-disorder nature of the phase transition and reveal the presence of two dipolar relaxations observed in the 320-220 K range and near the phase transition temperature. The low-temperature (LT) process exhibits the classical Arrhenius-type behaviour, whereas the behaviour of the HT relaxation suggests glass-like behaviour. Magnetic studies show that [FA]Mn(H2POO)3 is an example of a canted antiferromagnet with a low ordering temperature of 2.4 K. Diffuse reflectance studies show that the Mn (Cd) hypophosphite is a wide bandgap material with Eg = 5.20 eV (5.42 eV). Upon ultraviolet excitation (266 nm), [FA]Mn(H2POO)3 exhibits reddish-orange emission at 656 nm associated with the 4T1g(G) →6A1g(S) transition of octahedrally coordinated Mn2+ ions. [FA]Cd(H2POO)3 shows significantly weaker purplish-blue emission at low temperatures composed of two bands at 425 and 443 nm, which are almost completely quenched at 160 K. For both compounds, CIE chromaticity coordinates show negligible change with temperature. Furthermore, the intensity of the observed emissions decreases quickly with increasing temperature, suggesting the possible application of [FA]Mn(H2POO)3 in non-contact optical thermometry.

16.
Nat Commun ; 11(1): 5103, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037192

RESUMEN

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

17.
Mikrochim Acta ; 187(8): 430, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632649

RESUMEN

Sorptive and selective mini-membranes based on TiO2 directly synthesized onto cellulose filters (TiO2@cellulose) have been developed. The in situ synthesis of TiO2@cellulose applied is simple and economically advantageous. The obtained membranes can be useful for (1) separating arsenic(V) and selenium(IV) from other ions and organic matter, (2) speciation of arsenic and selenium, and (3) determining ulratraces of these ions in water samples. The membranes exhibit good stability and high maximum adsorption capacities for Se(IV) (71 mg g-1) and As(V) (41 mg g-1). A monolayer chemical adsorption of analytes on the membranes was confirmed. The structure of membranes was examined with scanning electron microscopy, x-ray diffractometry, and micro energy-dispersive x-ray fluorescence spectrometry (µ-EDXRF). The membranes were characterized by homogenous distribution of TiO2 onto cellulose. The TiO2@cellulose was used as a new sorbent in micro-solid phase extraction for determination of Se(IV) and As(V) by EDXRF. Using direct analysis of mini-membranes after sorption of analytes avoids the elution step. Thus, the proposed procedure is an attractive and solvent-free option for quantitative monitoring of Se(IV) and As(V) in different materials. Both analytes were quantitatively and simultaneously separated/determined from samples at pH 2 with very good recovery (close to 100%), precision (4.5%), and detection limits (0.4 ng mL-1 Se and 0.25 ng mL-1 As). TiO2@cellulose membranes were applied to water analysis. Graphical-abstract Effective method for determination of ultra trace arsenates and selenites using cellulose-based sorbent.

18.
Inorg Chem ; 59(13): 8855-8863, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32551544

RESUMEN

Two three-dimensional metal-organic compounds of the formula Pyr2KM(CN)6, where M = Co, Fe and Pyr = pyrrolidinium ((CH2)4NH2+), have been found to crystallize at room temperature in a monoclinic structure, space group P21/c. They are cyano-bridged compounds with an unprecedented type of architecture containing pyrrolidinium cations in the voids. The materials have been investigated by X-ray diffraction, dielectric, and spectroscopic methods as a function of temperature in order to determine their properties and the mechanism of the reversible phase transitions occurring at ca. 345-370 K. The phase transitions in both crystals are first order and are associated with a symmetry increase to a rhombohedral structure (space group R3̅m) as well as a significant disorder of organic cations above Tc. On the basis of Raman scattering and IR spectroscopy it has been assumed that the phase transition in both crystals is triggered by thermally induced pseudorotation of the organic cation and large out-of-plane motions of its atoms followed by a "click-in" of the cyanide bridges. The materials have been proposed as possible switchable dielectrics due to their respective high differences in dielectric permittivities across the phase transition.

19.
RSC Adv ; 10(32): 19020-19026, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35518310

RESUMEN

Hybrid perovskites based on hypophosphite ligands constitute an emerging family of compounds exhibiting unusual structures and offering a platform for construction of novel functional materials. We report the synthesis, crystal structure, and magnetic and optical properties of novel undoped and HCOO--doped manganese hypophosphite frameworks templated by methylhydrazinium cations. The undoped compound crystallizes in a three-dimensional perovskite-like orthorhombic structure, space group Pnma, with ordered organic cations located in windows between the perovskite cages expanding along the a-direction. Both conventional anti-phase tilting, unconventional in-phase tilting and columnar shifts in the a-direction are present. Doping with HCOO- ions has a insignificant influence on the crystal structure but leads to a decrease of the unit cell volume. Magnetic studies indicate that these compounds order antiferromagnetically at T N = 6.5 K. Optical studies indicate that they exhibit red photoluminescence under 266 nm excitation with the activation energy for thermal quenching of 98 and 65 meV for the undoped and doped sample, respectively. For the undoped sample, the emission lifetime reaches 5.05 ms at 77 K but it decreases to 62.26 µs at 300 K. The low value of the activation energy and huge temperature dependence of photoluminescence intensity suggest a high potential of these hypophosphites for non-contact temperature sensing.

20.
Dalton Trans ; 48(42): 15830-15840, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31577288

RESUMEN

Two novel three-dimensional metal-organic compounds of formula FA2KM(CN)6, where M = Co, Fe and FA = formamidinium (CH(NH2)2+), have been found to crystallize in a perovskite-like architecture. They have been investigated by X-ray diffraction, dielectric and spectroscopic methods as a function of temperature in order to determine the interactions in the crystals and the mechanism of phase transitions occurring at ca. 321 K upon heating. The phase transitions in both crystals are of first order and originate from the ordering of the formamidinium cations below TC. Symmetry reduction (cubic-to-triclinic) seems to be the strongest upon temperature decrease among known metal-organic frameworks. These materials have been proposed as possible switchable dielectrics with a convenient near-room-temperature transition temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...