Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Chem Biodivers ; 21(4): e202301697, 2024 Apr.
Article En | MEDLINE | ID: mdl-38345352

Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.


Plant Oils , Squalene , Olive Oil/chemistry , Plant Oils/chemistry , Sterols , Quality Control
2.
Heliyon ; 10(4): e25875, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38370196

Synthetic antioxidants are known for their efficiency to improve vegetable oil oxidative stability. But owing to their harmful effects on human health, edible oil industry is seeking for safe and healthy natural antioxidants. The present work was setup with the aim of improving soybean oil (SO) oxidative stability by using saffron (Crocus sativus L.) stigmas collected in Morocco. Saffron stigmas were used as a natural antioxidant at various concentrations (0.2, 0.3, and 0.6%) in soybean oil compared to tocobiol (0.3%) as a synthetic antioxidant (the positive control). Performances of such natural and synthetic antioxidants were evaluated by measuring oil basic quality indices under accelerated storage at 60 °C for 12 weeks. Such indices consisted of free fatty acids (FFA), peroxide value (PV), anisidine value (p-AV), total oxidation value (TOTOX), UV extinction coefficients (K232 and K270), fatty acids composition (FA), and iodine value (IV). The obtained data show that there were significant (p < 0.05) increases in FFA, PV, p-AV, K232, K270, and TOTOX but no much variations were observed for FA and IV especially in saffron stigmas fortified oils across storage times. However, in the case of oils fortified with saffron stigmas at different doses, such an increase was of a lesser magnitude (for FFA, PV, p-AV, K270, and TOTOX) as compared to tocobiol. These outcomes were confirmed by principal component analysis with strong positive correlations (p < 0.001) among FFA, PV, p-AV, K232, K270, and TOTOX. The most important, for which determination coefficient R2 > 0.9, were modeled through simple regressions. In conclusion, saffron stigmas with the different doses performed better than the positive control (tocobiol) regardless of the storage time. It could be concluded that saffron stigmas are a promising natural antioxidant, alternative to synthetic antioxidants, to enhance the oxidative stability of edible oils.

3.
Article En | MEDLINE | ID: mdl-36238607

We investigate and compare the nutritional and physicochemical properties of rapeseed and sunflower grown in Morocco. In order to examine a complete physicochemical characterization, various parameters such as mineral profile, fatty acid composition, sterols contents, total flavonoids content (TFC), total polyphenols content (TPC), and quality oil parameters were evaluated. The results showed a relatively small difference in the physicochemical composition of the seeds, as sunflower seeds recorded higher amounts of protein and oil content (22.98 ± 0.01 g/100 g and 41.30 ± 0.50 g/100 g) than rapeseed (22.98 ± 0.01 and 38.80 ± 0.50), while mineral elements profile was observed to be statistically different. Nevertheless, both seeds were rich in K, Ca, P, Mg, and Na and they were relatively poor in Na, Fe, Mn, Cu, and Zn. The most represented macroelement was K with the amount of 7936.53 ± 63.87 mg/Kg in rapeseed and 7739.22 ± 59.50 mg/Kg in sunflower. On the other hand, Cu was present in the analyzed samples the least, mostly below 20 mg/kg. For TPC and TFC, the sunflower recorded higher values (49.73 ± 0.50 and 25.37 ± 0.39 mg GAE/g) than rapeseed (38.49 ± 0.24 and 22.55 ± 1.76 mg QE/g). The fatty acid composition showed that both extracted oils have beneficial proprieties, as they are rich in unsaturated fatty acids; namely, rapeseed oil contains a high level of oleic acid (C18 : 1) (62.19%), while sunflower oil was richer in linoleic acid (C18 : 2) (55.7%). As a result, we conclude that the studied varieties have major importance in terms of both nutritional and seed improvement potentials.

4.
Foods ; 11(20)2022 Oct 18.
Article En | MEDLINE | ID: mdl-37431007

Oil oxidation is the main factor limiting vegetable oils' quality during storage, as it leads to the deterioration of oil's nutritional quality and gives rise to disagreeable flavors. These changes make fat-containing foods less acceptable to consumers. To deal with this problem and to meet consumer demand for natural foods, vegetable oil fabricators and the food industry are looking for alternatives to synthetic antioxidants to protect oils from oxidation. In this context, natural antioxidant compounds extracted from different parts (leaves, roots, flowers, and seeds) of medicinal and aromatic plants (MAPs) could be used as a promising and sustainable solution to protect consumers' health. The objective of this review was to compile published literature regarding the extraction of bioactive compounds from MAPs as well as different methods of vegetable oils enrichment. In fact, this review uses a multidisciplinary approach and offers an updated overview of the technological, sustainability, chemical and safety aspects related to the protection of oils.

...