Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Data ; 11(1): 1062, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349503

RESUMEN

The soybean hawkmoth Clanis bilineata tsingtauica Mell (Lepidoptera, Sphingidae; CBT), as one of the main leaf-chewing pests of soybeans, has gained popularity as an edible insect in China recently due to its high nutritional value. However, high-quality genome of CBT remains unclear, which greatly limits further research. In the present study, we assembled a high-quality chromosome-level genome of CBT using PacBio HiFi reads and Hi-C technologies for the first time. The size of the assembled genome is 477.45 Mb with a contig N50 length of 17.43 Mb. After Hi-C scaffolding, the contigs were anchored to 29 chromosomes with a mapping rate of 99.61%. Benchmarking Universal Single-Copy Orthologues (BUSCO) completeness value is 99.49%. The genome contains 252.16 Mb of repeat elements and 14,214 protein-coding genes. In addition, chromosomal synteny analysis showed that the genome of CBT has a strong synteny with that of Manduca sexta. In conclusion, this high-quality genome provides an important resource for future studies of CBT and contributes to the development of integrated pest management strategies.


Asunto(s)
Genoma de los Insectos , Animales , Mariposas Nocturnas/genética , Anotación de Secuencia Molecular , Cromosomas de Insectos , Sintenía
3.
Plant Methods ; 20(1): 130, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164761

RESUMEN

Soybean seeds are susceptible to damage from the Riptortus pedestris, which is a significant factor affecting the quality of soybean seeds. Currently, manual screening methods for soybean seeds are limited to visual inspection, making it difficult to identify seeds that are phenotypically defect-free but have been punctured by stink bugs on the sub-surface. To facilitate the convenient and efficient identification of healthy soybean seeds, this paper proposes a soybean seed pest detection method based on spatial frequency domain imaging combined with RL-SVM. Firstly, soybean optical data is obtained using single integration sphere technique, and the vigor index of soybean seeds is obtained through germination experiments. Then, based on the above two data items using feature extraction algorithms (the successive projections algorithm and the competitive adaptive reweighted sampling algorithm), the characteristic wavelengths of soybeans are identified. Subsequently, the spatial frequency domain imaging technique is used to obtain the sub-surface images of soybean seeds in a forward manner, and the optical coefficients such as the reduced scattering coefficient µ ' s and absorption coefficient µ a of soybean seeds are inverted. Finally, RL-MLR, RL-GRNN, and RL-SVM prediction models are established based on the ratio of the area of insect-damaged sub-surface to the entire seed, soybean varieties, and µ a at three wavelengths (502 nm, 813 nm, and 712 nm) for predicting and identifying soybean the stinging and sucking pest damage levels of soybean seeds. The experimental results show that the spatial frequency domain imaging technique yields small errors in the optical coefficients of soybean seeds, with errors of less than 15% for µ a and less than 10% for µ ' s . After parameter adjustment through reinforcement learning, the Macro-Recall metrics of each model have improved by 10%-15%, and the RL-SVM model achieves a high Macro-Recall value of 0.9635 for classifying the pest damage levels of soybean seeds.

4.
Hortic Res ; 11(5): uhae084, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766533

RESUMEN

Seed hardness is an important quality trait of vegetable soybean. To determine the factors underlying seed hardness, two landraces with contrasting seed hardness, Niumaohuang (low seed hardness) and Pixiansilicao (high seed hardness), were selected from 216 soybean accessions originating from 26 provinces in China. The contents of the main components in vegetable soybean seeds such as water, soluble sugar, starch, protein and oil were measured, and transcriptome analyses performed during five stages of seed developmental. Transcriptome analysis indicates that during the middle and late stages of seed development, a large number of genes involved in the synthesis or degradation of starch, storage protein, and fatty acids were differentially expressed, leading to differences in the accumulation of stored substances during seed maturation among Niumaohuang and Pixiansilicao. The activity of cell proliferation and the formation of cell walls in the middle and late stages of seed development may also affect the hardness of seeds to a certain extent. In addition, weighted gene co-expression network analysis (WGCNA) was undertaken to identify co-expressed gene modules and hub genes that regulate seed hardness. Overexpression of a candidate seed hardness regulatory hub gene, GmSWEET2, resulted in increased seed hardness. In this study, the important role of GmSWEET2 in regulating the hardness of vegetable soybean seeds was verified and numerous potential key regulators controlling seed hardness and the proportion of seed components were identified, laying the groundwork for improving the texture of vegetable soybean.

5.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474209

RESUMEN

Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene-allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene-allele system, six key genes-alleles were identified as starting points for further study on understanding the ATI gene network.


Asunto(s)
Estudio de Asociación del Genoma Completo , Plantones , Alelos , Plantones/genética , Sitios de Carácter Cuantitativo , Glycine max , Polimorfismo de Nucleótido Simple , Suelo , China
6.
Plant Commun ; 5(2): 100730, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37817409

RESUMEN

Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.


Asunto(s)
Isoflavonas , Humanos , Isoflavonas/genética , Isoflavonas/metabolismo , Glycine max/genética , Retroalimentación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003278

RESUMEN

Common cutworm (CCW) is an omnivorous insect causing severe yield losses in soybean crops. The seedling-stage mini-tray identification system with the damaged leaf percentage (DLP) as an indicator was used to evaluate antixenosis against CCW in the Chinese soybean landrace population (CSLRP) under three environments. Using the innovative restricted two-stage multi-locus genome-wide association study procedure (RTM-GWAS), 86 DLP QTLs with 243 alleles (2-11/QTL) were identified, including 66 main-effect loci with 203 alleles and 57 QTL-environment interaction loci with 172 alleles. Among the main-effect loci, 12 large-contribution loci (R2 ≥ 1%) explained 25.45% of the phenotypic variation (PV), and 54 small-contribution loci (R2 < 1%) explained 16.55% of the PV. This indicates that the CSLRP can be characterized with a DLP QTL-allele system complex that has not been found before, except for a few individual QTLs without alleles involved. From the DLP QTL-allele matrix, the recombination potentials expressed in the 25th percentile of the DLP of all possible crosses were predicted to be reduced by 41.5% as the maximum improvement and 14.2% as the maximum transgression, indicating great breeding potential in the antixenosis of the CSLRP. From the QTLs, 62 candidate genes were annotated, which were involved in eight biological function categories as a gene network of the DLP. Changing from susceptible to moderate plus resistant varieties in the CSLRP, 26 QTLs had 32 alleles involved, in which 19 genes were annotated from 25 QTL-alleles, including eight increased negative alleles on seven loci and 11 decreased positive alleles on 11 loci, showing the major genetic constitution changes for the antixenosis enhancement at the seedling stage in the CSLRP.


Asunto(s)
Glycine max , Plantones , Animales , Spodoptera/genética , Alelos , Glycine max/genética , Plantones/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Fenotipo
8.
Plant Sci ; 337: 111867, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37741497

RESUMEN

Small heat shock protein (sHSP) is involved in high temperature (HT) stress response. However, the function of sHSPs in regulating male fertility of soybean under HT stress remains largely unknown. Here, we identified a sHSP gene, GmHSP18.5a, which was responded to HT stress during flowering in cytoplasmic male sterility (CMS)-based restorer line of soybean. Moreover, GmHSFA6b turned out to directly activated the expression of GmHSP18.5a by binding to the heat shock cis-element in its promoter. Overexpression of GmHSP18.5a increased male fertility in transgenic Arabidopsis, soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. Reactive oxygen species (ROS) content detection revealed that GmHSP18.5a promoted the ROS scavenging ability of Arabidopsis inflorescence and soybean flower bud under HT stress. Enzyme activity assay and gene expression analysis indicated that GmHS18.5a mainly increased the activity of antioxidant enzymes and the expression level of ROS metabolism-related genes under HT stress. Our results indicated that GmHSP18.5a improved the male fertility restorability of CMS-based restorer line in soybean by regulating ROS metabolic pathway and reducing ROS accumulation. Our findings not only revealed the molecular mechanism of sHSP regulating the male fertility of soybean under HT stress, but also provided a theoretical basis for creating strong restorer line with thermotolerance.

9.
Theor Appl Genet ; 136(7): 152, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310498

RESUMEN

KEY MESSAGE: Fifty-three shade tolerance genes with 281 alleles in the SCSGP were identified directly using gene-allele sequence as markers in RTM GWAS, from which optimized crosses, evolutionary motivators, and gene-allele networks were explored. Shade tolerance is a key for optimal cultivation of soybean inter/relay-cropped with corn. To explore the shade tolerance gene-allele system in the southern China soybean germplasm, we proposed using gene-allele sequence markers (GASMs) in a restricted two-stage multi-locus model genome-wide association study (GASM-RTM-GWAS). A representative sample with 394 accessions was tested for their shade tolerance index (STI), in Nanning, China. Through whole-genome re-sequencing, 47,586 GASMs were assembled. From GASM-RTM-GWAS, 53 main-effect STI genes with 281 alleles (2-13 alleles/gene) (totally 63 genes with 308 alleles, including 38 G × E genes with 191 alleles) were identified and then organized into a gene-allele matrix composed of eight submatrices corresponding to geo-seasonal subpopulations. The population featured mild STI changes (1.69 → 1.56-1.82) and mild gene-allele changes (92.5% alleles inherited, 0% alleles excluded, 7.5% alleles emerged) from the primitive (SAIII) to the derived seven subpopulations, but large transgressive recombination potentials and optimal crosses were predicted. The 63 STI genes were annotated into six biological categories (metabolic process, catalytic activity, response to stresses, transcription and translation, signal transduction and transport and unknown functions), interacted as gene networks. From the STI gene-allele system, 38 important alleles of 22 genes were nominated for further in-depth study. GASM-RTM-GWAS performed powerful and efficient in germplasm population genetic study comparing to other procedures through facilitating direct and thorough identification of its gene-allele system, from which genome-wide breeding by design could be achieved, and evolutionary motivators and gene-allele networks could be explored.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Alelos , Glycine max/genética , Fitomejoramiento , China
10.
Genes (Basel) ; 14(6)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372434

RESUMEN

The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I-XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality.


Asunto(s)
Glycine max , Proteínas del Choque Térmico HSP40 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Plantas/metabolismo , Fitomejoramiento , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Crecimiento y Desarrollo
11.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298521

RESUMEN

In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Alelos , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
12.
Plant Biotechnol J ; 21(8): 1542-1559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37057908

RESUMEN

High-temperature (HT) stress at flowering stage causes significant damage to soybean, including pollen abortion and fertilization failure, but few genes involved in male fertility regulation under HT stress in soybean have been characterized. Here, we demonstrated that miR156b-GmSPL2b module involved in male fertility regulation of soybean cytoplasmic male sterility (CMS)-based restorer line under HT stress. Overexpression of miR156b decreased male fertility in soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. RNA-seq analysis found that miR156b mediated male fertility regulation in soybean under HT stress by regulating the expression of pollen development and HT response related genes. Metabolomic analysis of miR156bOE revealed reduction in flavonoid content under HT stress. Integrated transcriptomic and metabolomic analysis showed that the overexpression of miR156b caused flavonoid metabolism disorder in soybean flower bud under HT stress. Knockout of GmSPL2b also decreased the thermotolerance of soybean CMS-based restorer line during flowering. Moreover, GmSPL2b turned out to be directly bounded to the promoter of GmHSFA6b. Further verification indicated that GmHSFA6b overexpression enhanced HT tolerance in Arabidopsis during flowering. Substance content and gene expression analysis revealed that miR156b-GmSPL2b may mediate reactive oxygen species clearance by regulating flavonoid metabolism, thus participating in the regulation of male fertility in soybean under HT stress. This study not only provided important progress for understanding the molecular mechanism of miR156b-GmSPL2b regulating the male fertility of soybean CMS-based restorer line under HT stress, but also provided genetic resources and theoretical basis for creating HT-tolerant strong restorer lines.


Asunto(s)
Glycine max , Infertilidad Vegetal , Glycine max/genética , Infertilidad Vegetal/genética , Temperatura , Citosol , Fertilidad/genética , Citoplasma/genética
13.
J Integr Plant Biol ; 65(7): 1734-1752, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36916709

RESUMEN

Although seed weight has increased following domestication from wild soybean (Glycine soja) to cultivated soybean (Glycine max), the genetic basis underlying this change is unclear. Using mapping populations derived from chromosome segment substitution lines of wild soybean, we identified SW16.1 as the causative gene underlying a major quantitative trait locus controlling seed weight. SW16.1 encodes a nucleus-localized LIM domain-containing protein. Importantly, the GsSW16.1 allele from wild soybean accession N24852 had a negative effect on seed weight, whereas the GmSW16.1 allele from cultivar NN1138-2 had a positive effect. Gene expression network analysis, reverse-transcription quantitative polymerase chain reaction, and promoter-luciferase reporter transient expression assays suggested that SW16.1 regulates the transcription of MT4, a positive regulator of seed weight. The natural variations in SW16.1 and other known seed weight genes were analyzed in soybean germplasm. The SW16.1 polymorphism was associated with seed weight in 247 soybean accessions, showing much higher frequency of positive-effect alleles in cultivated soybean than in wild soybean. Interestingly, gene allele matrix analysis of the known seed weight genes revealed that G. max has lost 38.5% of the G. soja alleles and that most of the lost alleles had negative effects on seed weight. Our results suggest that eliminating negative alleles from G. soja led to a higher frequency of positive alleles and changed genetic backgrounds in G. max, which contributed to larger seeds in cultivated soybean after domestication from wild soybean. Our findings provide new insights regarding soybean domestication and should assist current soybean breeding programs.


Asunto(s)
Fabaceae , Glycine max , Glycine max/genética , Alelos , Domesticación , Fitomejoramiento , Semillas/genética
14.
Methods Mol Biol ; 2638: 123-146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781639

RESUMEN

Most of the breeding targets are quantitative traits. In exploring the quantitative trait locus (QTL) system of a trait, linkage mapping was established using sparse polymerase chain reaction (PCR) markers. With the genome-wide sequencing technology advanced, genome-wide association study (GWAS) was developed for natural (germplasm) populations using dense genomic markers, which facilitates the identification of the complete QTL system with their multiple alleles on genomic locations. GWAS makes use of the linkage disequilibrium (LD) due to historical saturate recombination and high-density genomic markers to detect QTLs through statistical test for the association between molecular markers and phenotypes. However, due to inbreeding and mixture of source populations, the germplasm population often has complex and unknown structure, which leads to false positives/negatives in GWAS. Various GWAS methods have been proposed to reduce false positives/negatives, including those of the general linear model and the mixed linear model, which focused mainly on finding a handful of major QTLs under single-locus model for major gene cloning and could not detect directly the multiple alleles using bi-allelic single-nucleotide polymorphism (SNP) marker. As a relatively thorough detection of QTLs with their multiple alleles is required for germplasm population, the restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS) procedure was proposed for identifying the QTL system with varying multiple alleles. From the RTM-GWAS results, a QTL-allele matrix is constructed as a compact form of the population genetic constitution, which can be further used for crop genetic and breeding studies, including major gene mining, population evolution, and breeding by genetic design.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fitomejoramiento , Mapeo Cromosómico , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Fenotipo , Polimorfismo de Nucleótido Simple
15.
Theor Appl Genet ; 136(1): 22, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36688967

RESUMEN

KEY MESSAGE: Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified. Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Filogenia , Fitomejoramiento , Semillas/genética
16.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293079

RESUMEN

Cytoplasmic male sterility (CMS) lays a foundation for the utilization of heterosis in soybean. The soybean CMS line SXCMS5A is an excellent CMS line exhibiting 100% male sterility. Cytological analysis revealed that in SXCMS5A compared to its maintainer SXCMS5B, its tapetum was vacuolated and abnormally developed. To identify the genes and metabolic pathways involving in pollen abortion of SXCMS5A, a comparative transcriptome analysis was conducted between SXCMS5A and SXCMS5B using flower buds. A total of 372,973,796 high quality clean reads were obtained from 6 samples (3 replicates for each material), and 840 differentially expressed genes (DEGs) were identified, including 658 downregulated and 182 upregulated ones in SXCMS5A compared to SXCMS5B. Among them, 13 DEGs, i.e., 12 open reading frames (ORFs) and 1 COX2, were mitochondrial genome genes in which ORF178 and ORF103c were upregulated in CMS lines and had transmembrane domain(s), therefore, identified as CMS candidate mitochondrial genes of SXCMS5A. Furthermore, numerous DEGs were associated with pollen wall development, carbohydrate metabolism, sugar transport, reactive oxygen species (ROS) metabolism and transcription factor. Some of them were further confirmed by quantitative real time PCR analysis between CMS lines with the same cytoplasmic source as SXCMS5A and their respective maintainer lines. The amount of soluble sugar and adenosine triphosphate and the activity of catalase and ascorbic acid oxidase showed that energy supply and ROS scavenging decreased in SXCMS5A compared to SXCMS5B. These findings provide valuable information for further understanding the molecular mechanism regulating the pollen abortion of soybean CMS.


Asunto(s)
Glycine max , Infertilidad Vegetal , Glycine max/metabolismo , Infertilidad Vegetal/genética , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Ciclooxigenasa 2/metabolismo , Perfilación de la Expresión Génica , Polen/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Transcriptoma , Azúcares/metabolismo , Factores de Transcripción/metabolismo , Ácido Ascórbico/metabolismo , Adenosina Trifosfato/metabolismo , Flores/genética , Flores/metabolismo
17.
Theor Appl Genet ; 135(12): 4261-4275, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36203035

RESUMEN

KEY MESSAGE: A leaflet trait on different canopy layers may have different QTLs; leaflet trait QTLs may cluster to form joint QTL segments; all canopy layer QTLs form a complete QTL system for a leaflet trait. As the main part of the plant canopy structure, leaf/leaflet size and shape affect the plant architecture and yield. To explore the leaflet trait QTL system, a population composed of 199 recombinant inbred lines derived from Changling (annual wild, narrow leaflet) and Yiqianli (landrace, broad leaflet) with their parents was tested for leaflet length (LL), width (LW) and length to width (LLW). The population was genotyped with specific-locus amplified fragment sequencing (SLAF-seq) and applied for linkage mapping of the leaflet traits. The results showed that the leaflet traits varied greatly even within a plant, which supported a stratified leaflet sampling strategy to evaluate these traits at top, middle and bottom canopy layers. Altogether, 13 LL, 10 LW and 9 LLW in a total of 32 plus 3 duplicated QTLs were identified, in which, 17 QTLs were new ones, and 48.6%, 28.6% and 22.8% of QTLs were from the top, middle and bottom layers, respectively, indicating the genetic importance of the top layer leaves. Since a leaflet trait may have layer-specific QTLs, all layer QTLs form a complete QTL system. Five QTL clusters each with their QTL supporting intervals overlapped were designated as joint QTL segments (JQSs). In JQS-16, with its linkage map further validated using PCR markers, two QTLs, qLW-16-1 and qLLW-16-1 of the top layer leaflet, were identified six QTL·times. Six candidate genes were predicted, with Glyma.16G127900 as the most potential one for LW and LLW. Three PCR markers, Gm16PAV0653, BARCSOYSSR_16_0796 and YC-16-3, were suggested for marker-assisted selection for LW and LLW in JQS-16.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Fenotipo , Genotipo , Ligamiento Genético
18.
Front Plant Sci ; 13: 938635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204047

RESUMEN

Alkaline soil has a high pH due to carbonate salts and usually causes more detrimental effects on crop growth than saline soil. Sodium hydrogen exchangers (NHXs) are pivotal regulators of cellular Na+/K+ and pH homeostasis, which is essential for salt tolerance; however, their role in alkaline salt tolerance is largely unknown. Therefore, in this study, we investigated the function of a soybean NHX gene, GmNHX6, in plant response to alkaline salt stress. GmNHX6 encodes a Golgi-localized sodium/hydrogen exchanger, and its transcript abundance is more upregulated in alkaline salt tolerant soybean variety in response to NaHCO3 stress. Ectopic expression of GmNHX6 in Arabidopsis enhanced alkaline salt tolerance by maintaining high K+ content and low Na+/K+ ratio. Overexpression of GmNHX6 also improved soybean tolerance to alkaline salt stress. A single nucleotide polymorphism in the promoter region of NHX6 is associated with the alkaline salt tolerance in soybean germplasm. A superior promoter of GmNHX6 was isolated from an alkaline salt tolerant soybean variety, which showed stronger activity than the promoter from an alkaline salt sensitive soybean variety in response to alkali stress, by luciferase transient expression assays. Our results suggested soybean NHX6 gene plays an important role in plant tolerance to alkaline salt stress.

19.
Front Plant Sci ; 13: 945839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898228

RESUMEN

Soybean is a native crop in China for ≈ 5,000 years. The 560 cultivars released in 2006-2015, commercialized with seeds available publicly, were collected (designated modern Chinese soybean cultivars, MCSCs), as a part of 2,371 ones released during ~100 years' breeding history. The MCSCs with their parental pedigrees were gathered, including 279, 155, and 126 cultivars from Northeast and Northwest China (NNC), Huang-Huai-Hai Valleys (HHH), and Southern China (SC), respectively. The MCSCs were tested in the field, genotyped with sequencing, and analyzed for their germplasm sources, genetic richness, and population differentiation based on pedigree integrated with genomic-marker analysis. The main results were as follows: (i) The MCSCs covering 12 of the global 13 MGs (maturity groups) showing different ecoregions with different cropping systems caused their different MG constitutions. (ii) Parental pedigree analysis showed 718 immediate parents and 604 terminal ancestors involved in MCSCs, from which 41 core-terminal ancestors were identified. (iii) NNC was richer in allele number and specific present/deficient alleles, and genetically distant from HHH and SC. (iv) The geographic grouping of MCSCs was partially consistent with marker-based clustering, indicating multiple genetic backgrounds in three eco-subpopulations. (v) Eleven major core-terminal ancestor-derived families were identified, including four derived from ancestors in NNC, four from HHH, and three from SC, containing 463 (82.68%) MCSCs with some cross-distribution among ecoregions. (vi) CGS (coefficient of genetic similarity) calculated from genomic markers showed more precision than COP (coefficient of parentage) using pedigree information in evaluating genetic relationship/differentiation. Overall, through pedigree and genomic-marker analyses, the germplasm constitutions of the three eco-subpopulations were relatively self-sufficient, and germplasm exchange is seriously required for further improvement.

20.
Front Plant Sci ; 13: 896549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903228

RESUMEN

Northeast China is a major soybean production region in China. A representative sample of the Northeast China soybean germplasm population (NECSGP) composed of 361 accessions was evaluated for their seed protein content (SPC) in Tieling, Northeast China. This SPC varied greatly, with a mean SPC of 40.77%, ranging from 36.60 to 46.07%, but it was lower than that of the Chinese soybean landrace population (43.10%, ranging from 37.51 to 50.46%). The SPC increased slightly from 40.32-40.97% in the old maturity groups (MG, MGIII + II + I) to 40.93-41.58% in the new MGs (MG0 + 00 + 000). The restricted two-stage multi-locus genome-wide association study (RTM-GWAS) with 15,501 SNP linkage-disequilibrium block (SNPLDB) markers identified 73 SPC quantitative trait loci (QTLs) with 273 alleles, explaining 71.70% of the phenotypic variation, wherein 28 QTLs were new ones. The evolutionary changes of QTL-allele structures from old MGs to new MGs were analyzed, and 97.79% of the alleles in new MGs were inherited from the old MGs and 2.21% were new. The small amount of new positive allele emergence and possible recombination between alleles might explain the slight SPC increase in the new MGs. The prediction of recombination potentials in the SPC of all the possible crosses indicated that the mean of SPC overall crosses was 43.29% (+2.52%) and the maximum was 50.00% (+9.23%) in the SPC, and the maximum transgressive potential was 3.93%, suggesting that SPC breeding potentials do exist in the NECSGP. A total of 120 candidate genes were annotated and functionally classified into 13 categories, indicating that SPC is a complex trait conferred by a gene network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA