Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biochem Biophys Res Commun ; 643: 1-7, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36584587

RESUMEN

The study aimed to explore the role of age-associated elevated cytosolic Ca2+ in changes of brain mitochondria energetic processes. Two groups of rats, young adults (4 months) and advanced old (24 months), were evaluated for potential alterations of mitochondrial parameters, the oxidative phosphorylation (OxPhos), membrane potential, calcium retention capacity, activity of glutamate/aspartate carrier (aralar), and ROS formation. We demonstrated that the brain mitochondria of older animals have a lower resistance to Ca2+ stress with resulting consequences. The suppressed complex I OxPhos and decreased membrane potential were accompanied by reduction of the Ca2+ threshold required for induction of mPTP. The Ca2+ binding sites of mitochondrial aralar mediated a lower activity of old brain mitochondria. The altered interaction between aralar and mPTP may underlie mitochondrial dysregulation leading to energetic depression during aging. At the advanced stages of aging, the declined metabolism is accompanied by the diminished oxidative background.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Ratas , Animales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias/metabolismo , Encéfalo/metabolismo , Fosforilación Oxidativa , Calcio/metabolismo
3.
J Biol Chem ; 295(14): 4383-4397, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094224

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the "mitochondrial gas pedal." Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Ácido Pirúvico/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Corazón/fisiología , Malatos/química , Malatos/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Fosforilación Oxidativa , Ratas , Especificidad por Sustrato , Sinaptosomas/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1861(2): 148137, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825809

RESUMEN

Electron transfer from all respiratory chain dehydrogenases of the electron transport chain (ETC) converges at the level of the quinone (Q) pool. The Q redox state is thus a function of electron input (reduction) and output (oxidation) and closely reflects the mitochondrial respiratory state. Disruption of electron flux at the level of the cytochrome bc1 complex (cIII) or cytochrome c oxidase (cIV) shifts the Q redox poise to a more reduced state which is generally sensed as respiratory stress. To cope with respiratory stress, many species, but not insects and vertebrates, express alternative oxidase (AOX) which acts as an electron sink for reduced Q and by-passes cIII and cIV. Here, we used Ciona intestinalis AOX xenotopically expressed in mouse mitochondria to study how respiratory states impact the Q poise and how AOX may be used to restore respiration. Particularly interesting is our finding that electron input through succinate dehydrogenase (cII), but not NADH:ubiquinone oxidoreductase (cI), reduces the Q pool almost entirely (>90%) irrespective of the respiratory state. AOX enhances the forward electron transport (FET) from cII thereby decreasing reverse electron transport (RET) and ROS specifically when non-phosphorylating. AOX is not engaged with cI substrates, however, unless a respiratory inhibitor is added. This sheds new light on Q poise signaling, the biological role of cII which enigmatically is the only ETC complex absent from respiratory supercomplexes but yet participates in the tricarboxylic acid (TCA) cycle. Finally, we delineate potential risks and benefits arising from therapeutic AOX transfer.


Asunto(s)
Aldehído Oxidasa/metabolismo , Ciona intestinalis/genética , Expresión Génica , Mitocondrias Cardíacas/enzimología , Especies Reactivas de Oxígeno/metabolismo , Aldehído Oxidasa/genética , Animales , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ratones , Mitocondrias Cardíacas/genética , Consumo de Oxígeno/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
5.
Dis Model Mech ; 10(2): 163-171, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28067626

RESUMEN

Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Fenómenos Fisiológicos , Proteínas de Plantas/metabolismo , Animales , Ciona intestinalis/enzimología , Cianuros/administración & dosificación , Cianuros/toxicidad , Ratones Transgénicos , Mitocondrias/metabolismo , Sustancias Protectoras/metabolismo , ARN no Traducido/genética
6.
IUBMB Life ; 65(3): 180-90, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23401251

RESUMEN

This review focuses on problems of the intracellular regulation of mitochondrial function in the brain via the (i) supply of mitochondria with ADP by means of ADP shuttles and channels and (ii) the Ca(2+) control of mitochondrial substrate supply. The permeability of the mitochondrial outer membrane for adenine nucleotides is low. Therefore rate dependent concentration gradients exist between the mitochondrial intermembrane space and the cytosol. The existence of dynamic ADP gradients is an important precondition for the functioning of ADP shuttles, for example CrP-shuttle. Cr at mM concentrations instead of ADP diffuses from the cytosol through the porin pores into the intermembrane space. The CrP-shuttle isoenzymes work in different directions which requires different metabolite concentrations mainly caused by dynamic ADP compartmentation. The ADP shuttle mechanisms alone cannot explain the load dependent changes in mitochondrial energization, and a complete model of mitochondrial regulation have to account the Ca(2+) -dependent substrate supply too. According to the old paradigmatic view, Ca(2+) (cyt) taken up by the mitochondrial Ca(2+) uniporter activates dehydrogenases within the matrix. However, recently it was found that Ca(2+) (cyt) at low nM concentrations exclusively activates the state 3 respiration via aralar, the mitochondrial glutamate/aspartate carrier. At higher Ca(2+) (cyt) (> 500 nM), brain mitochondria take up Ca(2+) for activation of substrate oxidation rates. Since brain mitochondrial pyruvate oxidation is only slightly influenced by Ca(2+) (cyt) , it was proposed that the cytosolic formation of pyruvate from its precursors is tightly controlled by the Ca(2+) dependent malate/aspartate shuttle. At low (50-100 nM) Ca(2+) (cyt) the pyruvate formation is suppressed, providing a substrate limitation control in neurons. This so called "gas pedal" mechanism explains why the energy metabolism of neurons in the nucleus suprachiasmaticus could be down-regulated at night but activated at day as a basis for the circadian changes in Ca(2+) (cyt) . It also could explain the energetic disadvantages caused by altered Ca(2+) (cyt) at mitochondrial diseases and neurodegeneration.


Asunto(s)
Calcio/metabolismo , Retroalimentación Fisiológica , Mitocondrias/metabolismo , Núcleo Supraquiasmático/metabolismo , Adenosina Difosfato/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiportadores/metabolismo , Ácido Aspártico/metabolismo , Ritmo Circadiano/fisiología , Citosol/metabolismo , Metabolismo Energético , Humanos , Membranas Intracelulares/metabolismo , Malatos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neuronas/metabolismo , Fosforilación Oxidativa , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...