Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
World J Clin Oncol ; 14(5): 203-214, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37275937

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) are produced by multiple cellular processes and are maintained at optimal levels in normal cells by endogenous antioxidants. In recent years, the search for potential exogenous antioxidants from dietary sources has gained considerable attention to eliminate excess ROS that is associated with oxidative stress related diseases including cancer. Propolis, a resinous honeybee product, has been shown to have protective effects against oxidative stress and anticancer effects against several types of neoplasms. AIM: To investigate the antioxidant and anticancer potential of Lebanese propolis when applied alone or in combination with the promising anticancer compound Thymoquinone (TQ) the main constituent of Nigella sativa essential oil. METHODS: Crude extracts of Lebanese propolis collected from two locations, Rashaya and Akkar-Danniyeh, were prepared in methanol and the total phenolic content was determined by Folin-Ciocalteu method. The antioxidant activity was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and to inhibit H2O2-induced oxidative hemolysis of human erythrocytes. The anticancer activity was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] MTT assay against HCT-116 human colorectal cancer cells and MDA-MB-231 human breast cancer cells. RESULTS: The total phenolic content of propolis extract from Rashaya and Akkar-Danniyeh were 56.81 µg and 83.503 µg of gallic acid equivalent /mg of propolis, respectively. Both natural agents exhibited strong antioxidant activities as evidenced by their ability to scavenge DPPH free radical and to protect erythrocytes against H2O2-induced hemolysis. They also dose-dependently decreased the viability of both cancer cell lines. The IC50 value of each of propolis extract from Rashaya and Akkar-Danniyeh or TQ was 22.3, 61.7, 40.44 µg/mL for breast cancer cells at 72 h and 33.3, 50.9, 33.5 µg/mL for colorectal cancer cells at the same time point, respectively. Importantly, the inhibitory effects of propolis on DPPH radicals and cancer cell viability were achieved at half its concentration when combined with TQ. CONCLUSION: Our results indicate that Lebanese propolis extract has antioxidant and anticancer potential and its combination with TQ could possibly prevent ROS- mediated diseases.

2.
World J Gastroenterol ; 28(33): 4787-4811, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36156922

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality. Cancer stem cells (CSCs) in CRC, which are spared by many chemotherapeutics, have tumorigenic capacity and are believed to be the reason behind cancer relapse. So far, there have been no effective drugs to target colon CSCs. Diiminoquinone (DIQ) has shown promising effects on targeting colon cancer. However, there is limited research on the effects of DIQ on eradicating CSCs in CRC. AIM: To investigate the anticancer potential of DIQ on colon CSCs in two-dimensional (2D) and three-dimensional (3D) models using colonospheres and patient-derived organoids. METHODS: Various 2D methods have been used to assess the effect and the mechanism of DIQ on HCT116 and HT29 cell lines including cell proliferation and viability assays, migration and invasion assays, immunofluorescence staining, and flow cytometry. The potency of DIQ was also assessed in 3D culture using the sphere formation assay and colon cancer patient-derived organoid model. RESULTS: Our results showed that DIQ significantly inhibited cell proliferation, migration, and invasion in HCT116 and HT29 cell lines. DIQ treatment induced apoptosis along with an accumulation of HCT116 and HT29 cancer cells in the sub-G1 region and an increase in reactive oxygen species in both CRC cell lines. DIQ reduced sphere-forming and self-renewal ability of colon cancer HCT116 and HT29 stem/progenitor cells at sub-toxic doses of 1 µmol/L. Mechanistically, DIQ targets CSCs by downregulating the main components of stem cell-related -catenin, AKT, and ERK oncogenic signaling pathways. Potently, DIQ displayed a highly significant decrease in both the count and the size of the organoids derived from colon cancer patients as compared to control and 5-fluorouracil conditions. CONCLUSION: This study is the first documentation of the molecular mechanism of the novel anticancer therapeutic DIQ via targeting CSC, a promising compound that needs further investigation.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Cateninas/farmacología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Células HCT116 , Células HT29 , Humanos , Recurrencia Local de Neoplasia , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno
3.
World J Gastroenterol ; 28(25): 2867-2880, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35978871

RESUMEN

Despite the significant progress in cancer therapy, colorectal cancer (CRC) remains one of the most fatal malignancies worldwide. Chemotherapy is currently the mainstay therapeutic modality adopted for CRC treatment. However, the long-term effectiveness of chemotherapeutic drugs has been hampered by their low bioavailability, non-selective tumor targeting mechanisms, non-specific biodistribution associated with low drug concentrations at the tumor site and undesirable side effects. Over the last decade, there has been increasing interest in using nanotechnology-based drug delivery systems to circumvent these limitations. Various nanoparticles have been developed for delivering chemotherapeutic drugs among which polymeric micelles are attractive candidates. Polymeric micelles are biocompatible nanocarriers that can bypass the biological barriers and preferentially accumulate in tumors via the enhanced permeability and retention effect. They can be easily engineered with stimuli-responsive and tumor targeting moieties to further ensure their selective uptake by cancer cells and controlled drug release at the desirable tumor site. They have been shown to effectively improve the pharmacokinetic properties of chemotherapeutic drugs and enhance their safety profile and anticancer efficacy in different types of cancer. Given that combination therapy is the new strategy implemented in cancer therapy, polymeric micelles are suitable for multidrug delivery and allow drugs to act concurrently at the action site to achieve synergistic therapeutic outcomes. They also allow the delivery of anticancer genetic material along with chemotherapy drugs offering a novel approach for CRC therapy. Here, we highlight the properties of polymeric micelles that make them promising drug delivery systems for CRC treatment. We also review their application in CRC chemotherapy and gene therapy as well as in combination cancer chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Neoplasias , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Micelas , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico , Distribución Tisular
4.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326517

RESUMEN

Resistance of cancer cells and normal tissue toxicity of ionizing radiation (IR) are known to limit the success of radiotherapy. There is growing interest in using IR with natural compounds to sensitize cancer cells and spare healthy tissues. Thymoquinone (TQ) was shown to radiosensitize several cancers, yet no studies have investigated its radiosensitizing effects on colorectal cancer (CRC). Here, we combined TQ with IR and determined its effects in two-dimensional (2D) and three-dimensional (3D) culture models derived from HCT116 and HT29 CRC cells, and in patient-derived organoids (PDOs). TQ sensitized CRC cells to IR and reduced cell viability and clonogenic survival and was non-toxic to non-tumorigenic intestinal cells. TQ sensitizing effects were associated with G2/M arrest and DNA damage as well as changes in key signaling molecules involved in this process. Combining a low dose of TQ (3 µM) with IR (2 Gy) inhibited sphere formation by 100% at generation 5 and this was associated with inhibition of stemness and DNA repair. These doses also led to ~1.4- to ~3.4-fold decrease in organoid forming ability of PDOs. Our findings show that combining TQ and IR could be a promising therapeutic strategy for eradicating CRC cells.

5.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056673

RESUMEN

Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL-1) lower than that of alginate (690 µg/mL-1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.


Asunto(s)
Alginatos/farmacología , Antineoplásicos/farmacología , Apoptosis , Ácido Ascórbico/farmacología , Neoplasias del Colon/tratamiento farmacológico , Phaeophyceae/química , Polisacáridos/farmacología , Antioxidantes/farmacología , Neoplasias del Colon/patología , Quimioterapia Combinada , Células HCT116 , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
6.
World J Gastrointest Pathophysiol ; 12(4): 59-83, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34354849

RESUMEN

Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.

7.
World J Clin Oncol ; 12(7): 522-543, 2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34367926

RESUMEN

The long-term success of standard anticancer monotherapeutic strategies has been hampered by intolerable side effects, resistance to treatment and cancer relapse. These monotherapeutic strategies shrink the tumor bulk but do not effectively eliminate the population of self-renewing cancer stem cells (CSCs) that are normally present within the tumor. These surviving CSCs develop mechanisms of resistance to treatment and refuel the tumor, thus causing cancer relapse. To ensure durable tumor control, research has moved away from adopting the monotreatment paradigm towards developing and using combination therapy. Combining different therapeutic modalities has demonstrated significant therapeutic outcomes by strengthening the anti-tumor potential of monotreatment against cancer and cancer stem cells, mitigating their toxic adverse effects, and ultimately overcoming resistance. Recently, there has been growing interest in combining natural products from different sources or with clinically used chemotherapeutics to further improve treatment efficacy and tolerability. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, has gained great attention in combination therapy research after demonstrating its low toxicity to normal cells and remarkable anticancer efficacy in extensive preclinical studies in addition to its ability to target chemoresistant CSCs. Here, we provide an overview of the therapeutic responses resulting from combining TQ with conventional therapeutic agents such as alkylating agents, antimetabolites and antimicrotubules as well as with topoisomerase inhibitors and non-coding RNA. We also review data on anticancer effects of TQ when combined with ionizing radiation and several natural products such as vitamin D3, melatonin and other compounds derived from Chinese medicinal plants. The focus of this review is on two outcomes of TQ combination therapy, namely eradicating CSCs and treating various types of cancers. In conclusion, the ability of TQ to potentiate the anticancer activity of many chemotherapeutic agents and sensitize cancer cells to radiotherapy makes it a promising molecule that could be used in combination therapy to overcome resistance to standard chemotherapeutic agents and reduce their associated toxicities.

8.
World J Clin Oncol ; 12(5): 342-354, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34131566

RESUMEN

BACKGROUND: Breast cancer is the most common cause of the majority of cancer-related deaths in women, among which triple-negative breast cancer is the most aggressive type of breast cancer diagnosed with limited treatment options. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, has been extensively studied as a potent anticancer molecule against various types of cancers. Honeybee products such as the royal jelly (RJ), the nutritive secretion fed to honeybee queens, exhibit a variety of biological activities besides its anticancer effect. However, the anticancer activity of the combination of TQ and RJ against breast cancer is still unknown. AIM: To investigate cytotoxicity of RJ in FHs 74 Int cells and the anticancer effects of TQ, RJ, and their combinations in the MDA-MB-231 cell line. METHODS: Cells were treated with TQ, RJ, and their combinations for 24 h. Using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, we determined the half-maximal inhibitory concentration of TQ. Trypan blue and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were then performed to assess the cell viability in response to different treatment conditions. Cell death and cycle regulation were investigated using propidium iodide deoxyribonucleic acid staining followed by flow cytometry in response to a single dose of TQ, RJ, and their combination. Immunostaining for cleaved caspase 3 and Ki67 expression was used to determine apoptosis induction and changes in cell proliferation. RESULTS: TQ alone inhibited cell viability in a dose-dependent manner at concentrations below and above the half-maximal inhibitory concentration. RJ exhibited relatively nontoxic effects against MDA-MB-231 cells and FHs 74 Int small intestinal cells at concentrations below 5 µg/mL. High doses of RJ (200 µg/mL) had greater toxicity against MDA-MB-231 cells. Interestingly, the inhibition of cell viability was most pronounced in response to 15 µmol/L TQ and 5 µg/mL RJ. A dose of 15 µmol/L TQ caused a significant increase in the PreG1 population, while a more pronounced effect on cell viability inhibition and PreG1 increase was observed in response to TQ and RJ combinations. TQ was the main inducer of caspase 3-dependent apoptosis when applied alone and in combination with RJ. In contrast, no significant regulation of Ki67 expression was observed, indicating that the decrease in cell viability was due to apoptosis induction rather than to inhibition of cell proliferation. CONCLUSION: This study is the first to report enhanced anticancer effects of TQ and RJ combination against MDA-MB-231 breast cancer cells, which could confer an advantage for cancer therapy.

10.
Int J Nanomedicine ; 15: 9557-9570, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293807

RESUMEN

INTRODUCTION: Triple negative breast cancer is an aggressive disorder which accounts for at least 15% of breast cancer diagnosis and a high percentage of breast cancer morbidity, hence intensive research efforts are focused on the development of effective therapies to overcome the disease. Thymoquinone (TQ), the bioactive constituent of Nigella sativa, exhibits anticancer activity, yet its translation to the clinic is hindered by its poor bioavailability and lack of quantification method in blood and tissues. To overcome these limitations, cubosomes were utilized for the encapsulation and delivery of this anticancer molecule. METHODS: Thymoquinone loaded cubosomes were prepared through the emulsification homogenization method. The physicochemical characteristics, including particle size, zeta potential, morphology and entrapment efficiency, were studied. Moreover, the in vitro antitumor activity was tested on breast cancer cell lines (MCF-7 and MDA-MB-231) and compared to non-tumorigenic cell line (MCF-10A). Subcellular localization, cellular uptake and apoptotic effects of the formulations were assessed. RESULTS: The results revealed that the TQ loaded cubosomal formulation exhibited a mean particle size of 98.0 ± 4.10 nm with narrow unimodal distribution. The high entrapment efficiency (96.60 ± 3.58%) and zeta potential (31.50 ±4.20 mV) conceived the effectiveness of this nanosystem for TQ encapsulation. Cell viability in both breast cancer cell lines demonstrated a dose-dependent decrease in response to treatment with free TQ or TQ-loaded cubosomes, with enhanced antitumor activity upon treating with the latter formulation. A significant increase in apoptotic bodies and cleaved caspase 3 was observed upon treatment of MDA-MB-231 cells with either TQ or TQ-loaded cubosomes. Localization and trafficking studies unveiled that cubosomes accumulate in the cytoplasm of the studied breast cancer cell lines. DISCUSSION: Our results show that thymoquinone encapsulation in cubosomal nanoparticles provides a promising anticancer drug delivery system with the ability to label, detect and subsequently trace it within the human cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzoquinonas/farmacología , Nanopartículas/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Benzoquinonas/administración & dosificación , Benzoquinonas/química , Benzoquinonas/farmacocinética , Neoplasias de la Mama/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Femenino , Hemólisis/efectos de los fármacos , Humanos , Células MCF-7 , Nanopartículas/administración & dosificación , Tamaño de la Partícula
11.
Oncotarget ; 11(31): 2959-2972, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32821342

RESUMEN

The high recurrence rates of colorectal cancer have been associated with a small population of cancer stem cells (CSCs) that are resistant to the standard chemotherapeutic drug, 5-fluorouracil (5FU). Thymoquinone (TQ) has shown promising antitumor properties on numerous cancer systems both in vitro and in vivo; however, its effect on colorectal CSCs is poorly established. Here, we investigated TQ's potential to target CSCs in a three-dimensional (3D) sphere-formation assay enriched for a population of colorectal cancer stem/progenitor cells. Our results showed a significant decrease in self-renewal potential of CSC populations enriched from 5FU-sensitive and resistant HCT116 cells at 10-fold lower concentrations when compared to 2D monolayers. TQ decreased the expression levels of colorectal stem cell markers CD44 and Epithelial Cell Adhesion Molecule EpCAM and proliferation marker Ki67 in colonospheres derived from both cell lines and reduced cellular migration and invasion. Further investigation revealed that TQ treatment led to increased TUNEL positivity and a dramatic increase in the amount of the DNA damage marker gamma H2AX particularly in 5FU-resistant colonospheres, suggesting that the diminished sphere forming ability in TQ-treated colonospheres is due to induction of DNA damage and apoptotic cell death. The intraperitoneal injection of TQ in mice inhibited tumor growth of spheres derived from 5FU-sensitive and 5FU-resistant HCT116 cells. Furthermore, TQ induced apoptosis and inhibited NF-κB and MEK signaling in mouse tumors. Altogether, our findings document TQ's effect on colorectal cancer stem-like cells and provide insights into its underlying mechanism of action.

12.
Drug Discov Today ; 25(7): 1189-1197, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32389641

RESUMEN

Human T cell lymphotropic virus-1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL), an aggressive malignancy of mature activated T cells. Although many therapeutic strategies are available, none are effective and most patients experience recurrence of the disease. Over the past decade, many drugs have been discovered that showed promising therapeutic potential against ATL but which remain in the preclinical testing phase. Mechanistically, these drugs either induce apoptosis or regulate cellular proliferation in ATL cells. Here, we provide a summary of these promising drugs that target ATL, with a focus on their mechanism of anticancer activity, to offer insights into the use of multiple drugs with different targets for enhancing ATL eradication.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Humanos
13.
Molecules ; 25(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344512

RESUMEN

Brown algae are a novel resource of biogenic molecules, however few studies have been conducted in the Mediterranean to assess the cytotoxic mechanisms of algal-derived compounds. This study focuses on the antineoplastic activity of extracts from non-investigated algae of the Lebanese coast, Colpomenia sinuosa. Extracts' antineoplastic activities were evaluated by MTT and trypan blue on different tumorigenic cells. Results indicated that the most potent extract was obtained by soxhlet using dichloromethane:methanol solvent (DM soxhlet) against HCT-116. Wound healing assay confirmed that this extract decreased the migration potential of HCT-116 cells with minimal effects on non-tumorigenic cells. It also induced an increase in the subG1 population as determined by flow cytometry. Western blot analysis demonstrated that apoptosis in treated HCT-116 cells was induced via upregulation of p21 protein and downregulation of the anti-apoptotic Bcl 2, which led to caspases activation. The latter, catalyzes the degradation of PARP-1, and thus suppresses cancer proliferation. Morphological alterations, further confirmed apoptosis. A strong pro-oxidant activity evidenced by the enhanced generation of reactive oxygen species (ROS) was observed in HCT-116 treated cells. Interestingly, a strong antioxidant effectively blocked effect induced by the extract. These results indicate that C. sinuosa is a source of bioactive compounds possessing pro-apoptotic and anti-migratory efficacy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Phaeophyceae/química , Especies Reactivas de Oxígeno/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos
14.
Life Sci ; 251: 117639, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32272181

RESUMEN

AIMS: To reduce the dose of arsenic used against human T-cell leukemia/lymphoma and to sensitize cells to drug treatment, we combined arsenic/interferon-alpha (As/IFN-α) with thymoquinone (TQ) in HTLV-I positive (HuT-102 and C91) and HTLV-1 negative (CEM and Jurkat) cell lines. MAIN METHODS: Cells were treated with TQ, As/IFN-α and combinations. Trypan blue and flow cytometry were used to investigate viability and cell cycle effects. Annexin-V staining, rhodamine assay and western blotting were used to determine apoptosis induction and changes in protein expression. Efficacy of single drugs and combinations were tested in adult T-cell leukemia (HuT-102) mouse xenograft model. KEY FINDINGS: TQ/As/IFN-α led to a more pronounced and synergistic time-dependent inhibitory effect on HTLV-I positive cells in comparison to As/IFN-α. While As/IFN-α combination was not effective against CEM or Jurkat cells, the triple combination TQ/As/IFN-α sensitized these two cell lines and led to a pronounced time-dependent inhibition of cell viability. TQ/As/IFN-α significantly induced apoptosis in all four cell lines and disrupted the mitochondrial membrane potential. Apoptosis was confirmed by the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2 and XIAP and upregulation of Bax. TQ alone or in combination activated p53 in HTLV-1 positive cell lines. Strikingly, TQ/As/IFN-α resulted in a pronounced significant decrease in tumor volume in HuT-102 xenograft mouse model, as compared to separate treatments or double combination therapy. SIGNIFICANCE: Our results suggest a strong potential for TQ to enhance the drug targeting effects of the standard clinical drugs As and IFN-α against CD4+ malignant T-cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Benzoquinonas/farmacología , Supervivencia Celular/efectos de los fármacos , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Arsénico/administración & dosificación , Benzoquinonas/administración & dosificación , Línea Celular Tumoral , Sinergismo Farmacológico , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Humanos , Interferón-alfa/administración & dosificación , Células Jurkat , Leucemia-Linfoma de Células T del Adulto/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancers (Basel) ; 11(10)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575057

RESUMEN

p21cip1/waf1 mediates various biological activities by sensing and responding to multiple stimuli, via p53-dependent and independent pathways. p21 is known to act as a tumor suppressor mainly by inhibiting cell cycle progression and allowing DNA repair. Significant advances have been made in elucidating the potential role of p21 in promoting tumorigenesis. Here, we discuss the involvement of p21 in multiple signaling pathways, its dual role in cancer, and the importance of understanding its paradoxical functions for effectively designing therapeutic strategies that could selectively inhibit its oncogenic activities, override resistance to therapy and yet preserve its tumor suppressive functions.

16.
Cancers (Basel) ; 11(9)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514410

RESUMEN

p21cip1/waf1 is a central regulator of cell cycle control and survival. While mutations are rare, it is commonly dysregulated in several human cancers due to epigenetic mechanisms influencing its transcriptional control. These mechanisms include promoter hypermethylation as well as additional pathways such as histone acetylation or methylation. The epigenetic regulators include writers, such as DNA methyltransferases (DNMTs); histone acetyltransferases (HATs) and histone lysine methyltransferases; erasers, such as histone deacetylases (HDACs); histone lysine demethylases [e.g., the Lysine Demethylase (KDM) family]; DNA hydroxylases; readers, such as the methyl-CpG-binding proteins (MBPs); and bromodomain-containing proteins, including the bromo- and extraterminal domain (BET) family. We further discuss the roles that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play in the epigenetic control of p21cip1/waf1 expression and its function in human cancers.

17.
Life Sci ; 232: 116628, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31278946

RESUMEN

AIMS: Adult T-cell leukemia (ATL) is a mature T-cell neoplasm associated with human T-cell lymphotropic virus (HTLV-1) infection. Major limitations in Doxorubicin (Dox) chemotherapy are tumor resistance and severe drug complications. Here, we combined Thymoquinone (TQ) with low concentrations of Dox and determined anticancer effects against ATL in cell culture and animal model. MAIN METHODS: HTLV-1 positive (HuT-102) and HTLV-1 negative (Jurkat) CD4+ malignant T-cell lines were treated with TQ, Dox and combinations. Viability and cell cycle effects were determined by MTT assay and flow cytometry analysis, respectively. Combination effects on mitochondrial membrane potential and generation of reactive oxygen species (ROS) were assessed. Expression levels of key cell death proteins were investigated by western blotting. A mouse xenograft model of ATL in NOD/SCID was used for testing drug effects and tumor tissues were stained for Ki67 and TUNEL. KEY FINDINGS: TQ and Dox caused greater inhibition of cell viability and increased sub-G1 cells in both cell lines compared to Dox or TQ alone. The combination induced apoptosis by increasing ROS and causing disruption of mitochondrial membrane potential. Pretreatment with N-acetyl cysteine (NAC) or pan caspase inhibitor significantly inhibited the apoptotic response suggesting that cell death is ROS- and caspase-dependent. TQ and Dox combination reduced tumor volume in NOD/SCID mice more significantly than single treatments through enhanced apoptosis without affecting the survival of mice. SIGNIFICANCE: Our combination model offers the possibility to use up to twofold lower doses of Dox against ATL while exhibiting the same cancer inhibitory effects.


Asunto(s)
Benzoquinonas/farmacología , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Benzoquinonas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Virus Linfotrópico T Tipo 1 Humano , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Death Dis ; 10(6): 379, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097715

RESUMEN

Cancer stem cells (CSCs) residing in colorectal cancer tissues have tumorigenic capacity and contribute to chemotherapeutic resistance and disease relapse. It is well known that the survival of colorectal CSCs after 5-fluorouracil (5-FU)-based therapy leads to cancer recurrence. Thus CSCs represent a promising drug target. Here, we designed and synthesized novel hybrid molecules linking 5-FU with the plant-derived compound thymoquinone (TQ) and tested the potential of individual compounds and their combination to eliminate colorectal CSCs. Both, Combi and SARB hybrid showed augmented cytotoxicity against colorectal cancer cells, but were non-toxic to organoids prepared from healthy murine small intestine. NanoString analysis revealed a unique signature of deregulated gene expression in response to the combination of TQ and 5-FU (Combi) and SARB treatment. Importantly, two principle stem cell regulatory pathways WNT/ß-Catenin and PI3K/AKT were found to be downregulated after Combi and hybrid treatment. Furthermore, both treatments strikingly eliminated CD133+ CSC population, accompanying the depleted self-renewal capacity by eradicating long-term propagated 3D tumor cell spheres at sub-toxic doses. In vivo xenografts on chicken eggs of SARB-treated HCT116 cells showed a prominent nuclear ß-Catenin and E-cadherin staining. This was in line with the reduced transcriptional activity of ß-Catenin and diminished cell adhesion under SARB exposure. In contrast to 5-FU, both, Combi and SARB treatment effectively reduced the angiogenic capacity of the remaining resistant tumor cells. Taken together, combination or hybridization of single compounds target simultaneously a broader spectrum of oncogenic pathways leading to an effective eradication of colorectal cancer cells.


Asunto(s)
Benzoquinonas/farmacología , Neoplasias Colorrectales/genética , Citotoxinas/farmacología , Fluorouracilo/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Antígeno AC133/metabolismo , Animales , Benzoquinonas/química , Adhesión Celular/efectos de los fármacos , Embrión de Pollo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Citotoxinas/química , Fluorouracilo/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Organoides/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
19.
ACS Omega ; 4(2): 3205-3212, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30842984

RESUMEN

Chemotherapy has been shown to be effective in reducing the progression and development of cancer in metastatic patients. However, drug selectivity is still a major issue for most chemotherapeutics. In this study, we synthesized four novel heterocyclic compounds having similarity in structure with quinone systems whereby nitrogen atoms replace the oxygen atoms. The anticancer activity of these compounds (DIQ3-6) was tested against HCT116 human colon cancer cells. We showed that all four heterocycles caused significant reduction in colon cancer cell viability at doses as low as 4 µM, a concentration that was not cytotoxic to normal human FHs74Int intestinal cell lines. Interestingly, these heterocycles inhibited colon sphere formation in 3D cultures at first generation (G1), mainly because of inhibition of proliferation as evidenced by Ki67 staining. Thus, DIQ3 causes sufficient eradication of the self-renewal ability of the highly resistant cancer stem cells. This study represents the first documentation of the activity of these novel heterocyclic compounds, particularly compound DIQ3, and their potential therapeutic use in targeting colon cancer self-renewal capacity. Our findings provide the basis for proposing these nontoxic and stable compounds for additional testing against cancer.

20.
Am J Cancer Res ; 8(1): 39-55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416919

RESUMEN

Despite advances in therapeutic strategies, colorectal cancer (CRC) remains the third cause of cancer-related deaths with a relatively low survival rate. Resistance to standard chemotherapy represents a major hurdle in disease management; therefore, developing new therapeutic agents demands a thorough understanding of their mechanisms of action. One of these compounds is ST1926, an adamantyl retinoid that has shown potent antitumor activities in several human cancer models. Here, we show that ST1926 selectively suppressed the proliferation of CRC cells while sparing normal counterparts, and significantly reduced tumor volume in a xenograft cancer mouse model. Next, we investigated the effects of ST1926 in CRC cells and observed early DNA damage, S-phase arrest, dissipation of mitochondrial membrane potential, and apoptosis induction, in a p53 and p21-independent manner. To address the underlying mechanism of resistance to ST1926, we generated ST1926-resistant HCT116 cells and sequenced DNA polymerase α (POLA1), which was reported to be a direct target to the drug's parent molecule, CD437. We identified similar mutations in POLA1 that conferred resistance to ST1926 and CD437. These mutations were absent in 5-fluorouracil-resistant HCT116 cells, clearly validating the specificity of these mutations to the lack of DNA damage and acquired resistance to ST1926. ST1926 also inhibited POLA1 activity and reduced its protein expression levels. Further, in silico analysis of normal and malignant tissue expression data demonstrated that POLA1 levels are elevated in CRC cells and tissues compared to normal counterparts as well as to other cancer types. Our findings highlight previously uncharacterized mechanisms of action of ST1926 in CRC and suggest that elevated POLA1 expression is a pertinent molecular feature and an attractive target in CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...