Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(10): e0164465, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736935

RESUMEN

We have been investigating the role that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) content plays in modulating the solubility of the Parkinson's disease protein alpha-synuclein (α-syn) using Saccharomyces cerevisiae and Caenorhabditis elegans. One enzyme that synthesizes PE is the conserved enzyme phosphatidylserine decarboxylase (Psd1/yeast; PSD-1/worms), which is lodged in the inner mitochondrial membrane. We previously found that decreasing the level of PE due to knockdown of Psd1/psd-1 affects the homeostasis of α-syn in vivo. In S. cerevisiae, the co-occurrence of low PE and α-syn in psd1Δ cells triggers mitochondrial defects, stress in the endoplasmic reticulum, misprocessing of glycosylphosphatidylinositol-anchored proteins, and a 3-fold increase in the level of α-syn. The goal of this study was to identify drugs that rescue this phenotype. We screened the Prestwick library of 1121 Food and Drug Administration-approved drugs using psd1Δ + α-syn cells and identified cyclosporin A, meclofenoxate hydrochloride, and sulfaphenazole as putative protective compounds. The protective activity of these drugs was corroborated using C. elegans in which α-syn is expressed specifically in the dopaminergic neurons, with psd-1 depleted by RNAi. Worm populations were examined for dopaminergic neuron survival following psd-1 knockdown. Exposure to cyclosporine, meclofenoxate, and sulfaphenazole significantly enhanced survival at day 7 in α-syn-expressing worm populations whereby 50-55% of the populations displayed normal neurons, compared to only 10-15% of untreated animals. We also found that all three drugs rescued worms expressing α-syn in dopaminergic neurons that were deficient in the phospholipid cardiolipin following cardiolipin synthase (crls-1) depletion by RNAi. We discuss how these drugs might block α-syn pathology in dopaminergic neurons.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/patología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/genética , Carboxiliasas/metabolismo , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Meclofenoxato/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancias Protectoras/farmacología , Solubilidad , Sulfafenazol/farmacología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
3.
PLoS One ; 11(1): e0146931, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26784896

RESUMEN

Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward) movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF) or acidic extracellular pH (pHe), increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA. Since these drugs cannot be advanced into the clinic due to toxicity, we have designed a high-content assay to discover drugs that block peripheral lysosome trafficking with the goal of identifying novel drugs that inhibit tumor cell invasion. An automated high-content imaging system (Cellomics) was used to measure the position of lysosomes relative to the nucleus. Among a total of 2210 repurposed and natural product drugs screened, 18 "hits" were identified. One of the compounds identified as an anterograde lysosome trafficking inhibitor was niclosamide, a marketed human anti-helminthic drug. Further studies revealed that niclosamide blocked acidic pHe, HGF, and epidermal growth factor (EGF)-induced anterograde lysosome redistribution, protease secretion, motility, and invasion of DU145 castrate resistant prostate cancer cells at clinically relevant concentrations. In an effort to identify the mechanism by which niclosamide prevented anterograde lysosome movement, we found that this drug exhibited no significant effect on the level of ATP, microtubules or actin filaments, and had minimal effect on the PI3K and MAPK pathways. Niclosamide collapsed intralysosomal pH without disruption of the lysosome membrane, while bafilomycin, an agent that impairs lysosome acidification, was also found to induce JLA in our model. Taken together, these data suggest that niclosamide promotes juxtanuclear lysosome aggregation (JLA) via modulation of pathways involved in lysosome acidification. In conclusion, we have designed a validated reproducible high-content assay to screen for drugs that inhibit lysosome trafficking and reduce tumor invasion and we summarize the action of one of these drugs.


Asunto(s)
Antinematodos/farmacología , Lisosomas/efectos de los fármacos , Niclosamida/farmacología , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos
4.
Genes Cancer ; 4(1-2): 39-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23946870

RESUMEN

The Tousled-like kinases (TLKs) are involved in chromatin assembly, DNA repair, and transcription. Two TLK genes exist in humans, and their expression is often dysregulated in cancer. TLKs phosphorylate Asf1 and Rad9, regulating double-strand break (DSB) repair and the DNA damage response (DDR). TLKs maintain genomic stability and are important therapeutic intervention targets. We identified specific inhibitors of TLKs from several compound libraries, some of which belong to the family of phenothiazine antipsychotics. The inhibitors prevented the TLK-mediated phosphorylation of Rad9(S328) and impaired checkpoint recovery and DSB repair. The inhibitor thioridazine (THD) potentiated tumor killing with chemotherapy and also had activity alone. Staining for γ-H2AX revealed few positive cells in untreated tumors, but large numbers in mice treated with low doxorubicin or THD alone, possibly the result of the accumulation of DSBs that are not promptly repaired as they may occur in the harsh tumor growth environment.

5.
J Cell Physiol ; 228(12): 2350-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23813439

RESUMEN

Core binding factor (CBF) is a heterodimeric transcription factor containing one of three DNA-binding proteins of the Runt-related transcription factor family (RUNX1-3) and the non-DNA-binding protein, CBFß. RUNX1 and CBFß are the most common targets of chromosomal rearrangements in leukemia. CBF has been implicated in other cancer types; for example RUNX1 and RUNX2 are implicated in cancers of epithelial origin, including prostate, breast, and ovarian cancers. In these tumors, CBF is involved in maintaining the malignant phenotype and, when highly over-expressed, contributes to metastatic growth in bone. Herein, lentiviral delivery of CBFß-specific shRNAs was used to achieve a 95% reduction of CBFß in an ovarian cancer cell line. This drastic reduction in CBFß expression resulted in growth inhibition that was not associated with a cell cycle block or an increase in apoptosis. However, CBFß silencing resulted in increased autophagy and production of reactive oxygen species (ROS). Since sphingolipid and ceramide metabolism regulates non-apoptotic cell death, autophagy, and ROS production, fumonsin B1 (FB1), an inhibitor of ceramide synthase, was used to alter ceramide production in the CBFß-silenced cells. FB1 treatment inhibited the CBFß-dependent increase in autophagy and provided a modest increase in cell survival. To document alterations to sphingolipids in the CBFß-silenced cells, ceramide, and lactosylceramide levels were directly examined by mass spectrometry. Substantial increases in ceramide species and decreases in lactosylceramides were identified. Altogether, this report provides evidence that CBF transcriptional pathways control cellular survival, at least in part, through sphingolipid metabolism.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal/deficiencia , Subunidad beta del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Esfingolípidos/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis/genética , Autofagia/genética , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Lactosilceramidos/genética , Lactosilceramidos/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esfingolípidos/genética
6.
Biochem Biophys Res Commun ; 414(1): 205-8, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21946065

RESUMEN

The Prestwick and NIH chemical libraries were screened for drugs that protect baker's yeast from sugar-induced cell death (SICD). SICD is triggered when stationary-phase yeast cells are transferred from spent rich medium into water with 2% glucose and no other nutrients. The rapid, apoptotic cell death occurs because reactive oxygen species (ROS) accumulate. We found that triclabendazole, which is used to treat liver flukes in cattle and man, partially protects against SICD. Characterization of triclabendazole revealed that it also protects yeast cells from death induced by the Parkinson's disease-related protein alpha-synuclein (α-syn), which is known to induce the accumulation of ROS.


Asunto(s)
Bencimidazoles/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Animales , Bencimidazoles/aislamiento & purificación , Bovinos , Línea Celular , Humanos , Fármacos Neuroprotectores/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas , Triclabendazol , alfa-Sinucleína/farmacología
7.
J Exp Clin Cancer Res ; 30: 34, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21453502

RESUMEN

BACKGROUND: Cancer cells have increased levels of transferrin receptor and lower levels of ferritin, an iron deficient phenotype that has led to the use of iron chelators to further deplete cells of iron and limit cancer cell growth. As cancer cells also have increased reactive oxygen species (ROS) we hypothesized that a contrarian approach of enhancing iron entry would allow for further increased generation of ROS causing oxidative damage and cell death. METHODS: A small molecule library consisting of ~11,000 compounds was screened to identify compounds that stimulated iron-induced quenching of intracellular calcein fluorescence. We verified the iron facilitating properties of the lead compound, LS081, through 55Fe uptake and the expression of the iron storage protein, ferritin. LS081-induced iron facilitation was correlated with rates of cancer cell growth inhibition, ROS production, clonogenicity, and hypoxia induced factor (HIF) levels. RESULTS: Compound LS081 increased 55Fe uptake in various cancer cell lines and Caco2 cells, a model system for studying intestinal iron uptake. LS081 also increased the uptake of Fe from transferrin (Tf). LS081 decreased proliferation of the PC-3 prostate cancer cell line in the presence of iron with a lesser effect on normal prostate 267B1 cells. In addition, LS081 markedly decreased HIF-1α and -2α levels in DU-145 prostate cancer cell line and the MDA-MB-231 breast cancer cell lines, stimulated ROS production, and decreased clonogenicity. CONCLUSIONS: We have developed a high through-put screening technique and identified small molecules that stimulate iron uptake both from ferriTf and non-Tf bound iron. These iron facilitator compounds displayed properties suggesting that they may serve as anti-cancer agents.


Asunto(s)
Antineoplásicos/farmacología , Hidrazonas/farmacología , Hierro/metabolismo , Niacinamida/análogos & derivados , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ferritinas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Niacinamida/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
J Biol Chem ; 286(23): 20267-74, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21515692

RESUMEN

Stationary-phase Saccharomyces cerevisiae cells transferred from spent rich media into water live for weeks, whereas the same cells die within hours if transferred into water with 2% glucose in a process called sugar-induced cell death (SICD). Our hypothesis is that SICD is due to a dysregulated Crabtree effect, which is the phenomenon whereby glucose transiently inhibits respiration and ATP synthesis. We found that stationary-phase cells in glucose/water consume 21 times more O(2) per cell than exponential-phase cells in rich media, and such excessive O(2) consumption causes reactive oxygen species to accumulate. We also found that inorganic phosphate and succinate protect against SICD but by different mechanisms. Phosphate protects by triggering the synthesis of Fru-1,6-P(2), which inhibits respiration in isolated mitochondria. Succinate protects in wild-type cells but fails to protect in dic1Δ cells. DIC1 codes for a mitochondrial inner membrane protein that exchanges cytosolic succinate for matrix phosphate. We propose that succinate depletes matrix phosphate, which in turn inhibits respiration and ATP synthesis. In sum, restoring the Crabtree effect, whether with phosphate or succinate, protects cells from SICD.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Glucosa/metabolismo , Consumo de Oxígeno/fisiología , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Adenosina Trifosfato/genética , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Saccharomyces cerevisiae/genética
9.
J Cell Biochem ; 100(1): 112-28, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16888807

RESUMEN

Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.


Asunto(s)
Ácidos Fosfatidicos/farmacología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Activación Enzimática , Cinética , Ratones , Células 3T3 NIH , Fosfolipasa D/metabolismo , Fosforilación , Unión Proteica , Transducción de Señal
10.
J Cell Biochem ; 85(1): 131-45, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11891857

RESUMEN

The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.


Asunto(s)
Endosomas/metabolismo , Isoenzimas/biosíntesis , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas/fisiología , Fosfolipasas de Tipo C/biosíntesis , Línea Celular , Dimerización , Expresión Génica/fisiología , Humanos , Isoenzimas/genética , Fusión de Membrana/fisiología , Fosfolipasa C delta , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estructura Terciaria de Proteína/fisiología , Fosfolipasas de Tipo C/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA