Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38051272

RESUMEN

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Ratones , Animales , Nanotubos de Carbono/toxicidad , Nanoestructuras/toxicidad , Pulmón/patología , Compuestos de Boro/toxicidad , Compuestos de Boro/química
2.
Nanomaterials (Basel) ; 13(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368275

RESUMEN

Oxidized carbon nanotubes obtained by catalytic chemical vapor deposition were filled with an aqueous solution of nano-energetic materials using a very simple impregnation method. The work compares different energetic materials but focuses especially on an inorganic compound belonging to the Werner complexes, [Co(NH3)6][NO3]3. Our results show a large increase in released energy upon heating, which we demonstrate to be related to the confinement of the nano-energetic material either directly by filling of the inner channel of carbon nanotubes or to insertion in the triangular channels between adjacent nanotubes when they form bundles.

3.
Diagnostics (Basel) ; 14(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38201408

RESUMEN

Mismatch repair deficiency (d-MMR)/microsatellite instability (MSI), KRAS, and BRAF mutational status are crucial for treating advanced colorectal cancer patients. Traditional methods like immunohistochemistry or polymerase chain reaction (PCR) can be challenged by artificial intelligence (AI) based on whole slide images (WSI) to predict tumor status. In this systematic review, we evaluated the role of AI in predicting MSI status, KRAS, and BRAF mutations in colorectal cancer. Studies published in PubMed up to June 2023 were included (n = 17), and we reported the risk of bias and the performance for each study. Some studies were impacted by the reduced number of slides included in the data set and the lack of external validation cohorts. Deep learning models for the d-MMR/MSI status showed a good performance in training cohorts (mean AUC = 0.89, [0.74-0.97]) but slightly less than expected in the validation cohort when available (mean AUC = 0.82, [0.63-0.98]). Contrary to the MSI status, the prediction of KRAS and BRAF mutations was less explored with a less robust methodology. The performance was lower, with a maximum of 0.77 in the training cohort, 0.58 in the validation cohort for KRAS, and 0.82 AUC in the training cohort for BRAF.

4.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578477

RESUMEN

The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.

5.
Nanotoxicology ; 15(1): 35-51, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33171057

RESUMEN

Despite the growing interest for boron nitride nanotubes (BNNT) due to their unique properties, data on the evaluation of the environmental risk potential of this emerging engineered nanomaterial are currently lacking. Therefore, the ecotoxicity of a commercial form of BNNT (containing tubes, hexagonal-boron nitride, and boron) was assessed in vivo toward larvae of the amphibian Xenopus laevis. Following the exposure, multiple endpoints were measured in the tadpoles as well as in bacterial communities associated to the host gut. Exposure to BNNT led to boron accumulation in host tissues and was not associated to genotoxic effects. However, the growth of the tadpoles increased due to BNNT exposure. This parameter was associated to remodeling of gut microbiome, benefiting to taxa from the phylum Bacteroidetes. Changes in relative abundance of this phylum were positively correlated to larval growth. The obtained results support the finding that BNNT are biocompatible as indicated by the absence of toxic effect from the tested nanomaterials. In addition, byproducts, especially free boron present in the tested product, were overall beneficial for the metabolism of the tadpoles.


Asunto(s)
Compuestos de Boro/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Nanotubos/toxicidad , Xenopus laevis/microbiología , Animales , Monitoreo del Ambiente , Larva/efectos de los fármacos , Larva/microbiología
6.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970633

RESUMEN

The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg.L-¹). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate "safer-by-design" strategy for the development of a safer material for environment.

7.
Chem Commun (Camb) ; (43): 6664-6, 2009 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19865684

RESUMEN

The synthesis and characterization of superparamagnetic iron(iii) oxide nanowires confined within double-walled carbon nanotubes by capillary filling with a melted precursor (iron iodide) followed by thermal treatment is reported for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...