Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Antioxidants (Basel) ; 10(2)2021 Feb 02.
Article En | MEDLINE | ID: mdl-33540918

Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.

3.
Nat Genet ; 53(1): 86-99, 2021 01.
Article En | MEDLINE | ID: mdl-33414553

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


DNA Copy Number Variations/genetics , Xenograft Model Antitumor Assays , Animals , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
4.
Sci Transl Med ; 12(555)2020 08 05.
Article En | MEDLINE | ID: mdl-32759276

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease.


Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , ErbB Receptors , Humans , Neoplasm Recurrence, Local , Neoplasm, Residual , Paneth Cells , Phenotype
5.
Sci Adv ; 6(26): eaba4353, 2020 06.
Article En | MEDLINE | ID: mdl-32637608

Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.


Antirheumatic Agents , Arthritis, Rheumatoid , Synoviocytes , Animals , Antirheumatic Agents/therapeutic use , Cells, Cultured , Fibroblasts/metabolism , Mice , Synoviocytes/metabolism , Synoviocytes/pathology , Tumor Necrosis Factor-alpha/metabolism
6.
Sensors (Basel) ; 20(2)2020 Jan 14.
Article En | MEDLINE | ID: mdl-31947584

Reactive oxygen species (ROS) are central effectors of inflammation and play a key role in cell signaling. Previous reports have described an association between oxidative events and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling. Our data show that ex vivo T cells respond to -SH group oxidation with a distinctive tyrosine phosphorylation response and that these events elicit specific cellular responses. The expression of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory action through the inhibition of a ROS-generated reaction.


L-Selectin/metabolism , Receptors, Interleukin-2/metabolism , Signal Transduction/physiology , Syk Kinase/metabolism , T-Lymphocytes , Cell Survival , Cells, Cultured , Diamide , Humans , Oxidation-Reduction , Phosphorylation , T-Lymphocytes/metabolism , T-Lymphocytes/physiology
7.
Br J Cancer ; 120(5): 527-536, 2019 03.
Article En | MEDLINE | ID: mdl-30723303

BACKGROUND: Interferon-induced expression of programmed cell death ligands (PD-L1/PD-L2) may sustain tumour immune-evasion. Patients featuring MET amplification, a genetic lesion driving transformation, may benefit from anti-MET treatment. We explored if MET-targeted therapy interferes with Interferon-γ modulation of PD-L1/PD-L2 in MET-amplified tumours. METHODS: PD-L1/PD-L2 expression and signalling pathways downstream of MET or Interferon-γ were analysed in MET-amplified tumour cell lines and in patient-derived tumour organoids, in basal condition, upon Interferon-γ stimulation, and after anti-MET therapy. RESULTS: PD-L1 and PD-L2 were upregulated in MET-amplified tumour cells upon Interferon-γ treatment. This induction was impaired by JNJ-605, a selective inhibitor of MET kinase activity, and MvDN30, an antibody inducing MET proteolytic cleavage. We found that activation of JAKs/ STAT1, signal transducers downstream of the Interferon-γ receptor, was neutralised by MET inhibitors. Moreover, JAK2 and MET associated in the same signalling complex depending on MET phosphorylation. Results were confirmed in MET-amplified organoids derived from human colorectal tumours, where JNJ-605 treatment revoked Interferon-γ induced PD-L1 expression. CONCLUSIONS: These data show that in MET-amplified cancers, treatment with MET inhibitors counteracts the induction of PD-1 ligands by Interferon-γ. Thus, therapeutic use of anti-MET drugs may provide additional clinical benefit over and above the intended inhibition of the target oncogene.


B7-H1 Antigen/drug effects , Interferon-gamma/pharmacology , Neoplasms/genetics , Programmed Cell Death 1 Ligand 2 Protein/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Tumor Escape/drug effects , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Janus Kinases/drug effects , Janus Kinases/metabolism , Liver Neoplasms/secondary , Molecular Targeted Therapy , Neoplasms/metabolism , Organoids , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Proto-Oncogene Proteins c-met/genetics , Receptors, Interferon , STAT1 Transcription Factor/drug effects , STAT1 Transcription Factor/metabolism , Signal Transduction , Tumor Escape/genetics , Interferon gamma Receptor
8.
Clin Cancer Res ; 24(17): 4297-4308, 2018 09 01.
Article En | MEDLINE | ID: mdl-29764854

Purpose: c-KIT overexpression is well recognized in cancers such as gastrointestinal stromal tumors (GIST), small cell lung cancer (SCLC), melanoma, non-small cell lung cancer (NSCLC), and acute myelogenous leukemia (AML). Treatment with the small-molecule inhibitors imatinib, sunitinib, and regorafenib resulted in resistance (c-KIT mutant tumors) or limited activity (c-KIT wild-type tumors). We selected an anti-c-KIT ADC approach to evaluate the anticancer activity in multiple disease models.Experimental Design: A humanized anti-c-KIT antibody LMJ729 was conjugated to the microtubule destabilizing maytansinoid, DM1, via a noncleavable linker (SMCC). The activity of the resulting ADC, LOP628, was evaluated in vitro against GIST, SCLC, and AML models and in vivo against GIST and SCLC models.Results: LOP628 exhibited potent antiproliferative activity on c-KIT-positive cell lines, whereas LMJ729 displayed little to no effect. At exposures predicted to be clinically achievable, LOP628 demonstrated single administration regressions or stasis in GIST and SCLC xenograft models in mice. LOP628 also displayed superior efficacy in an imatinib-resistant GIST model. Further, LOP628 was well tolerated in monkeys with an adequate therapeutic index several fold above efficacious exposures. Safety findings were consistent with the pharmacodynamic effect of neutropenia due to c-KIT-directed targeting. Additional toxicities were considered off-target and were consistent with DM1, such as effects in the liver and hematopoietic/lymphatic system.Conclusions: The preclinical findings suggest that the c-KIT-directed ADC may be a promising therapeutic for the treatment of mutant and wild-type c-KIT-positive cancers and supported the clinical evaluation of LOP628 in GIST, AML, and SCLC patients. Clin Cancer Res; 24(17); 4297-308. ©2018 AACR.


Drug Resistance, Neoplasm/drug effects , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Proto-Oncogene Proteins c-kit/genetics , Animals , Antibodies, Anti-Idiotypic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/immunology , Heterografts , Humans , Imatinib Mesylate/pharmacology , Immunoconjugates/immunology , Mice , Mutation , Neoplasms/classification , Neoplasms/immunology , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/immunology
9.
Nat Commun ; 8: 15107, 2017 05 31.
Article En | MEDLINE | ID: mdl-28561063

Stromal content heavily impacts the transcriptional classification of colorectal cancer (CRC), with clinical and biological implications. Lineage-dependent stromal transcriptional components could therefore dominate over more subtle expression traits inherent to cancer cells. Since in patient-derived xenografts (PDXs) stromal cells of the human tumour are substituted by murine counterparts, here we deploy human-specific expression profiling of CRC PDXs to assess cancer-cell intrinsic transcriptional features. Through this approach, we identify five CRC intrinsic subtypes (CRIS) endowed with distinctive molecular, functional and phenotypic peculiarities: (i) CRIS-A: mucinous, glycolytic, enriched for microsatellite instability or KRAS mutations; (ii) CRIS-B: TGF-ß pathway activity, epithelial-mesenchymal transition, poor prognosis; (iii) CRIS-C: elevated EGFR signalling, sensitivity to EGFR inhibitors; (iv) CRIS-D: WNT activation, IGF2 gene overexpression and amplification; and (v) CRIS-E: Paneth cell-like phenotype, TP53 mutations. CRIS subtypes successfully categorize independent sets of primary and metastatic CRCs, with limited overlap on existing transcriptional classes and unprecedented predictive and prognostic performances.


Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Stromal Cells/metabolism , Transcriptome , Animals , Antineoplastic Agents, Immunological/pharmacology , Cell Lineage , Cetuximab/pharmacology , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , ErbB Receptors/metabolism , Female , Gene Expression Profiling , Genes, p53 , Glycolysis , Heterografts , Humans , Insulin-Like Growth Factor II/genetics , Male , Mice , Microsatellite Instability , Mutation , Prognosis , Signal Transduction , Stromal Cells/pathology , Transforming Growth Factor beta/metabolism
10.
J Hematol Oncol ; 9(1): 63, 2016 07 29.
Article En | MEDLINE | ID: mdl-27473052

We studied telomere length in 32 CML patients who discontinued imatinib after achieving complete molecular remission and 32 age-sex-matched controls. The relative telomere length (RTL) was determined by q-PCR as the telomere to single copy gene (36B4) ratio normalized to a reference sample (K-562 DNA). Age-corrected RTL (acRTL) was also obtained. The 36-month probability of treatment-free remission (TFR) was 59.4 %. TFR patients showed shorter acRTL compared to relapsed (mean ± SD = 0.01 ± 0.14 vs 0.20 ± 0.21; p = 0.01). TFR was significantly higher in CML patients with acRTL ≤0.09 (78.9 vs 30.8 %, p = 0.002). CML stem cells harboring longer telomeres possibly maintain a proliferative potential after treatment discontinuation.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Telomere Shortening , Withholding Treatment , Adult , Age Factors , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Male , Middle Aged , Polymerase Chain Reaction , Remission Induction , Telomere/ultrastructure , Telomere Shortening/genetics
11.
Cancer Discov ; 5(8): 832-41, 2015 Aug.
Article En | MEDLINE | ID: mdl-26243863

UNLABELLED: The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. SIGNIFICANCE: HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer.


Colorectal Neoplasms/genetics , Mutation , Receptor, ErbB-2/genetics , Afatinib , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Targeted Therapy , Mucous Membrane/metabolism , Mucous Membrane/pathology , Quinazolines/pharmacology , Quinolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
12.
Cell Signal ; 27(4): 777-88, 2015 Apr.
Article En | MEDLINE | ID: mdl-25572700

Reactive Oxygen Species (ROS) are crucial to multiple biological processes involved in the pathophysiology of inflammation, and are also involved in redox signaling responses. Although previous reports have described an association between oxidative events and the modulation of innate immunity, a role for redox signaling in T cell mediated adaptive immunity has not been described yet. This work aims at assessing if T cells can sense redox stress through protein sulfhydryl oxidation and respond with tyrosine phosphorylation changes. Our data show that Jurkat T cells respond to -SH group oxidation with specific tyrosine phosphorylation events. The release of T cell cytokines TNF, IFNγ and IL2 as well as the expression of a number of receptors are affected by those changes. Additionally, experiments with spleen tyrosine kinase (Syk) inhibitors showed a major involvement of Syk in these responses. The experiments described herein show a link between cysteine oxidation and tyrosine phosphorylation changes in T cells, as well as a novel mechanism by which Syk inhibitors exert their anti-inflammatory activity through the inhibition of a response initiated by ROS.


Cysteine/metabolism , T-Lymphocytes/metabolism , Tyrosine/metabolism , Cysteine/immunology , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Oxidation-Reduction , Oxidative Stress , Phosphorylation , Protein-Tyrosine Kinases/immunology , Protein-Tyrosine Kinases/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Syk Kinase , T-Lymphocytes/immunology , Tyrosine/immunology
13.
Sci Transl Med ; 7(272): 272ra12, 2015 Jan 28.
Article En | MEDLINE | ID: mdl-25632036

Among patients with colorectal cancer who benefit from therapy targeted to the epidermal growth factor receptor (EGFR), stable disease (SD) occurs more frequently than massive regressions. Exploring the mechanisms of this incomplete sensitivity to devise more efficacious treatments will likely improve patients' outcomes. We tested therapies tailored around hypothesis-generating molecular features in patient-derived xenografts ("xenopatients"), which originated from 125 independent samples that did not harbor established resistance-conferring mutations. Samples from xenopatients that responded to cetuximab, an anti-EGFR agent, with disease stabilization displayed high levels of EGFR family ligands and receptors, indicating high EGFR pathway activity. Five of 21 SD models (23.8%) characterized by particularly high expression of EGFR and EGFR family members regressed after intensified EGFR blockade by cetuximab and a small-molecule inhibitor. In addition, a subset of cases in which enhanced EGFR inhibition was unproductive (6 of 16, 37.5%) exhibited marked overexpression of insulin-like growth factor 2 (IGF2). Enrichment of IGF2 overexpressors among cases with SD was demonstrated in the entire xenopatient collection and was confirmed in patients by mining clinical gene expression data sets. In functional studies, IGF2 overproduction attenuated the efficacy of cetuximab. Conversely, interception of IGF2-dependent signaling in IGF2-overexpressing xenopatients potentiated the effects of cetuximab. The clinical implementation of IGF inhibitors awaits reliable predictors of response, but the results of this study suggest rational combination therapies for colorectal cancer and provide evidence for IGF2 as a biomarker of reduced tumor sensitivity to anti-EGFR therapy and a determinant of response to combined IGF2/EGFR targeting.


Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , ErbB Receptors/chemistry , Insulin-Like Growth Factor II/chemistry , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers, Tumor/metabolism , Cetuximab , Clinical Trials as Topic , Drug Resistance, Neoplasm , Exons , Humans , Immunohistochemistry , Ligands , Mice , Mutation , Neoplasm Transplantation
14.
Target Oncol ; 10(1): 65-76, 2015 Mar.
Article En | MEDLINE | ID: mdl-24816908

Agents targeting the insulin-like growth factor receptor type 1 (IGF1R) have shown antitumor activity. Based on the evidence for interaction between the IGF-1 and TRAIL pathways, we hypothesized that the combination of ganitumab (monoclonal antibody to IGF1R) with the pro-apoptotic death receptor 5 agonist, conatumumab, might increase antitumor response. Ganitumab and conatumumab were tested in combination in a Colo-205 xenograft model. Part 1 of the clinical study was a phase Ib program of three doses of conatumumab (1, 3, 15 mg/kg) in combination with 18 mg/kg ganitumab to determine the maximum tolerated dose (MTD) in patients with advanced solid tumors. Part 2 was conducted in six cohorts with advanced non-small cell lung cancer (squamous or non-squamous histology), colorectal cancer, sarcoma, pancreatic cancer, or ovarian cancer, treated at the recommended doses of the combination. The combination was significantly more active in the Colo-205 xenograft model than either single agent alone (p < 0.0015). In part 1 of the clinical study, no dose-limiting toxicities were observed and the MTD of conatumumab was 15 mg/kg in combination with 18 mg/kg ganitumab. In part 2, 78 patients were treated and there were no objective responses but 28 patients (36 %) had stable disease (median 46 days, range 0-261). The combination was well-tolerated with no new toxicities. In conclusion, the combination of ganitumab and conatumumab was well-tolerated but had no objective responses in the population tested. The successful future application of this combination of antitumor mechanisms may rely on the identification of predictive biomarkers.


Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Adult , Aged , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Female , Humans , Male , Maximum Tolerated Dose , Mice , Mice, Nude , Middle Aged , Xenograft Model Antitumor Assays , Young Adult
15.
Proc Natl Acad Sci U S A ; 111(32): E3343-52, 2014 Aug 12.
Article En | MEDLINE | ID: mdl-25071179

Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior.


Astrocytes/physiology , Recognition, Psychology/physiology , Animals , Astrocytes/drug effects , Brain Waves/drug effects , Brain Waves/physiology , Calcium Signaling , Carbachol/pharmacology , Electroencephalography , Gene Expression , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/physiology , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Nerve Net/cytology , Nerve Net/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synaptic Transmission , Tetanus Toxin/genetics , Tetanus Toxin/metabolism , Tissue Culture Techniques , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
16.
Cell Rep ; 7(1): 86-93, 2014 Apr 10.
Article En | MEDLINE | ID: mdl-24685132

There are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance. Drugs targeting both EGFR and ERBB2, each capable of forming heterodimers with ERBB3, can reverse unresponsiveness to MEK inhibition by decreasing inhibitory phosphorylation of the proapoptotic proteins BAD and BIM. Moreover, ERBB3 protein level is a biomarker of response to combinatorial treatment. These data suggest a combination strategy for treating KRAS mutant colon and lung cancers and a way to identify the tumors that are most likely to benefit from such combinatorial treatment.


Colonic Neoplasms/enzymology , Lung Neoplasms/enzymology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Receptor, ErbB-3/biosynthesis , ras Proteins/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Nude , Mutation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Xenograft Model Antitumor Assays , ras Proteins/metabolism
17.
Cancer ; 119(24): 4290-8, 2013 Dec 15.
Article En | MEDLINE | ID: mdl-24122767

BACKGROUND: In patients with previously untreated metastatic colorectal cancer (mCRC), we conducted a phase 1b/randomized phase 2 trial to define the safety, tolerability, and efficacy of mFOLFOX6 plus bevacizumab (mFOLFOX6/bev) with conatumumab, an investigational, fully human monoclonal IgG1 antibody that specifically activates death receptor 5 (DR5). METHODS: Twelve patients were enrolled in a phase 1b open-label dose-escalation trial of conatumumab with mFOLFOX6/bev; thereafter, 190 patients were randomized 1:1:1 to receive mFOLFOX6/bev in combination with 2 mg/kg conatumumab, 10 mg/kg conatumumab, or placebo. Therapy cycles were repeated every 2 weeks until disease progression or the occurrence of unacceptable toxicity. RESULTS: In phase 1b, conatumumab with mFOLFOX6/bev was tolerated without apparent added toxicity over mFOLFOX6/bev alone. In phase 2, conatumumab with mFOLFOX6/bev did not confer a benefit in progression-free survival when compared with placebo with mFOLFOX6/bev. Toxicity was similar in all treatment arms. Following treatment, similar increases in circulating caspase-3 levels were observed in all arms. CONCLUSIONS: Conatumumab with mFOLFOX6/bev did not offer improved efficacy over the same chemotherapy with placebo in first-line treatment of patients with mCRC. These data do not support further development of conatumumab in advanced CRC.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab , Biomarkers, Tumor/metabolism , Caspase 3/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , Disease-Free Survival , Dose-Response Relationship, Drug , Double-Blind Method , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Leucovorin/administration & dosage , Leucovorin/adverse effects , Male , Middle Aged , Neoplasm Metastasis , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
18.
Cancer Discov ; 3(6): 658-73, 2013 Jun.
Article En | MEDLINE | ID: mdl-23729478

EGF receptor (EGFR)-targeted monoclonal antibodies are effective in a subset of metastatic colorectal cancers. Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in tumors that do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies show that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived colorectal cancer xenografts, MET amplification correlated with resistance to EGFR blockade, which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in colorectal cancer and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification.


Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins c-met/pharmacology , Animals , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , Cetuximab , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Genes, ras , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Panitumumab , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Random Allocation , Xenograft Model Antitumor Assays
19.
Ann Surg ; 257(6): 1089-95, 2013 Jun.
Article En | MEDLINE | ID: mdl-23665971

OBJECTIVE: Upon colon cancer metastasis resection in liver, disease outcome is heterogeneous, ranging from indolent to very aggressive, with early recurrence. The aim of this study is to investigate the capability of metastasis associated in colon cancer 1 (MACC1) levels measured in liver metastasis specimens to predict further recurrence of the disease. METHODS: Gene expression and gene dosage of MACC1, hepatocyte growth factor (HGF), and hepatocyte growth factor receptor (MET) were assessed using quantitative realtime polymerase chain reaction on a cohort of 64 liver metastasis samples from patients with complete follow-up of 36 months and detailed clinical annotation. The most relevant mutations associated to prognosis in colorectal cancer, KRAS, and PIK3CA were assessed on the same specimens with Sanger sequencing. RESULTS: Receiver operating characteristic (ROC) analysis revealed that MACC1 mRNA abundance is a good indicator of metastatic recurrence (AUC = 0.65, P < 0.05), whereas no such results were obtained with MET and HGF, nor with gene dosage. Generation of MACC1-based risk classes was capable of successfully separating patients into poor and good prognosis subgroups [hazard ratio (HR) = 5.236, 95% confidence interval (CI) = 1.2068-22.715, P < 0.05]. Also KRAS mutation was significantly associated with higher risk of recurrence (HR = 2.07, 95% CI = 1.048-4.09, P < 0.05). Cox regression multivariate analysis supported the independence of MACC1, but not KRAS, from known prognostic clinical information (Node Size HR = 3.155, 95% CI = 1.4418-6.905, P < 0.001, Preoperative carcinoembryonic antigen HR = 2.359, 95% CI = 1.0203-5.452, P < 0.05, MACC1 HR = 7.2739, 95% CI = 1.6584-31.905, P < 0.01). CONCLUSIONS: MACC1, a new easily detectable biomarker in cancer, is an independent prognostic factor of recurrence after liver resection of colorectal cancer metastasis.


Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Transcription Factors/genetics , Aged , Biomarkers, Tumor/genetics , Carcinoembryonic Antigen/metabolism , Class I Phosphatidylinositol 3-Kinases , Diagnostic Imaging , Female , Hepatocyte Growth Factor/genetics , Humans , Male , Monte Carlo Method , Mutation , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Neoplasm Staging , Phosphatidylinositol 3-Kinases/genetics , Polymerase Chain Reaction , Predictive Value of Tests , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras) , RNA, Messenger , ROC Curve , Trans-Activators , ras Proteins/genetics
20.
J Thorac Oncol ; 8(3): 329-37, 2013 Mar.
Article En | MEDLINE | ID: mdl-23370314

INTRODUCTION: This study evaluated the efficacy, safety, and pharmacokinetics of conatumumab combined with paclitaxel-carboplatin (PC) as first-line treatment for advanced non-small-cell lung cancer (NSCLC). METHODS: Patients (aged >18 years) with previously untreated advanced or recurrent NSCLC were randomized 1:1:1 (stratified by Eastern Cooperative Oncology Group performance status and disease stage) to receive up to six 3-week cycles of PC combined with conatumumab (arm 1, 3 mg/kg; arm 2, 15 mg/kg) or placebo (arm 3) every 3 weeks. The primary endpoint was progression-free survival (PFS). This study is registered with ClinicalTrials.gov (NCT00534027). RESULTS: Between August 8, 2007 and April 9, 2009, 172 patients were randomized (arm 1, n = 57; arm 2, n = 56; arm 3, n = 59). Median PFS was 5.4 months (95% confidence interval [CI] 4.1-6.3) in arm 1 (hazard ratio [HR] 0.84 [95% CI 0.57-1.24]; p = 0.41), 4.8 months (95% CI 3.2-6.5) in arm 2 (HR 0.93 [0.64-1.35]; p = 0.57), and 5.5 months (95% CI 4.3-5.7) in arm 3. There was an interaction between tumor histology and the effect of conatumumab on PFS (squamous HR 0.47 [0.23-0.94]; nonsquamous HR 1.08 [0.74-1.57]; interaction p = 0.039).The most common grade of three or more adverse events were neutropenia, anemia, and thrombocytopenia. There was no evidence of pharmacokinetic interactions between conatumumab and PC. Of 158 patients assessable for FCGR3A polymorphisms, conatumumab treatment was associated with a trend toward longer overall survival (HR 0.72 [0.43-1.23]) among V-allele carriers (V/V or F/V; n = 54) but not among F-allele homozygotes (n = 34; HR 1.37 [0.66-2.86]). CONCLUSION: Although well tolerated, the addition of conatumumab to PC did not improve outcomes in unselected patients with previously untreated advanced NSCLC.


Adenocarcinoma, Bronchiolo-Alveolar/drug therapy , Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Large Cell/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Lung Neoplasms/drug therapy , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adenocarcinoma, Bronchiolo-Alveolar/mortality , Adenocarcinoma, Bronchiolo-Alveolar/pathology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/administration & dosage , Carboplatin/administration & dosage , Carcinoma, Large Cell/mortality , Carcinoma, Large Cell/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Female , Follow-Up Studies , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Paclitaxel/administration & dosage , Prognosis , Survival Rate
...